Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768006

RESUMEN

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Asunto(s)
COVID-19 , Gripe Humana , Neoplasias , Animales , Humanos , Gripe Humana/patología , Ratones , Microglía/patología , Vaina de Mielina , Neoplasias/patología , SARS-CoV-2
2.
Stem Cells ; 39(1): 115-128, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166420

RESUMEN

Mesenchymal stromal cells (MSCs) are widely used in clinical trials because of their ability to modulate inflammation. The success of MSCs has been variable over 25 years, most likely due to an incomplete understanding of their mechanism. After MSCs are injected, they traffic to the lungs and other tissues where they are rapidly cleared. Despite being cleared, MSCs suppress the inflammatory response in the long term. Using human cord tissue-derived MSCs (hCT-MSCs), we demonstrated that hCT-MSCs directly interact and reprogram monocytes and macrophages. After engaging hCT-MSCs, monocytes and macrophages engulfed cytoplasmic components of live hCT-MSCs, then downregulated gene programs for antigen presentation and costimulation, and functionally suppressed the activation of helper T cells. We determined that low-density lipoprotein receptor-related proteins on monocytes and macrophages mediated the engulfment of hCT-MSCs. Since a large amount of cellular information can be packaged in cytoplasmic RNA processing bodies (p-bodies), we generated p-body deficient hCT-MSCs and confirmed that they failed to reprogram monocytes and macrophages in vitro and in vivo. hCT-MSCs suppressed an inflammatory response caused by a nasal lipopolysaccharide challenge. Although both control and p-body deficient hCT-MSCs were engulfed by infiltrating lung monocytes and macrophages, p-body deficient hCT-MSCs failed to suppress inflammation and downregulate MHC-II. Overall, we identified a novel mechanism by which hCT-MSCs indirectly suppressed a T-cell response by directly interacting and reprogramming monocytes and macrophages via p-bodies. The results of this study suggest a novel mechanism for how MSCs can reprogram the inflammatory response and have long-term effects to suppress inflammation.


Asunto(s)
Reprogramación Celular/inmunología , Macrófagos/inmunología , Células Madre Mesenquimatosas/inmunología , Monocitos/inmunología , Animales , Reprogramación Celular/genética , Xenoinjertos , Humanos , Trasplante de Células Madre Mesenquimatosas , Ratones
3.
Acta Neuropathol ; 139(2): 365-382, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31552482

RESUMEN

Oligodendrocyte progenitor cells (OPCs) account for about 5% of total brain and spinal cord cells, giving rise to myelinating oligodendrocytes that provide electrical insulation to neurons of the CNS. OPCs have also recently been shown to regulate inflammatory responses and glial scar formation, suggesting functions that extend beyond myelination. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifaceted phagocytic receptor that is highly expressed in several CNS cell types, including OPCs. Here, we have generated an oligodendroglia-specific knockout of LRP1, which presents with normal myelin development, but is associated with better outcomes in two animal models of demyelination (EAE and cuprizone). At a mechanistic level, LRP1 did not directly affect OPC differentiation into mature oligodendrocytes. Instead, animals lacking LRP1 in OPCs in the demyelinating CNS were characterized by a robust dampening of inflammation. In particular, LRP1-deficient OPCs presented with impaired antigen cross-presentation machinery, suggesting a failure to propagate the inflammatory response and thus promoting faster myelin repair and neuroprotection. Our study places OPCs as major regulators of neuroinflammation in an LRP1-dependent fashion.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/fisiología , Esclerosis Múltiple/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Cuprizona , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/patología , Antígenos de Histocompatibilidad Clase I , Humanos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/etiología , Esclerosis Múltiple/patología
4.
Brain Behav Immun ; 57: 1-7, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26796621

RESUMEN

Oligodendrocyte progenitor cells (OPCs) are the often-overlooked fourth glial cell type in the central nervous system (CNS), comprising about 5% of the CNS. For a long time, our vision of OPC function was limited to the generation of mature oligodendrocytes. However, new studies have highlighted the multifaceted nature of OPCs. During homeostatic and pathological conditions, OPCs are the most proliferative cell type in the CNS, a property not consistent with the need to generate new oligodendrocytes. Indeed, OPCs modulate neuronal activity and OPC depletion in the brain can trigger depressive-like behavior. More importantly, OPCs are actively recruited to injury sites, where they orchestrate glial scar formation and contribute to the immune response. The following is a comprehensive analysis of the literature on OPC function beyond myelination, in the context of the healthy and diseased adult CNS.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Sistema Nervioso Central/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Adulto , Animales , Humanos
5.
J Cell Sci ; 126(Pt 1): 209-20, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23132925

RESUMEN

In the injured adult mammalian central nervous system (CNS), products are generated that inhibit neuronal sprouting and regeneration. In recent years, most attention has focused on the myelin-associated inhibitory proteins (MAIs) Nogo-A, OMgp, and myelin-associated glycoprotein (MAG). Binding of MAIs to neuronal cell-surface receptors leads to activation of RhoA, growth cone collapse, and neurite outgrowth inhibition. In the present study, we identify low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) as a high-affinity, endocytic receptor for MAG. In contrast with previously identified MAG receptors, binding of MAG to LRP1 occurs independently of terminal sialic acids. In primary neurons, functional inactivation of LRP1 with receptor-associated protein, depletion by RNA interference (RNAi) knock-down, or LRP1 gene deletion is sufficient to significantly reverse MAG and myelin-mediated inhibition of neurite outgrowth. Similar results are observed when LRP1 is antagonized in PC12 and N2a cells. By contrast, inhibiting LRP1 does not attenuate inhibition of neurite outgrowth caused by chondroitin sulfate proteoglycans. Mechanistic studies in N2a cells showed that LRP1 and p75NTR associate in a MAG-dependent manner and that MAG-mediated activation of RhoA may involve both LRP1 and p75NTR. LRP1 derivatives that include the complement-like repeat clusters CII and CIV bind MAG and other MAIs. When CII and CIV were expressed as Fc-fusion proteins, these proteins, purified full-length LRP1 and shed LRP1 all attenuated the inhibition of neurite outgrowth caused by MAG and CNS myelin in primary neurons. Collectively, our studies identify LRP1 as a novel MAG receptor that functions in neurite outgrowth inhibition.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuritas/metabolismo , Animales , Células CHO , Células COS , Línea Celular , Cricetinae , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Espectrometría de Masas , Vaina de Mielina/genética , Glicoproteína Asociada a Mielina/genética , Proteínas del Tejido Nervioso , Células PC12 , Unión Proteica , Ratas , Receptores de Factores de Crecimiento , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo
6.
J Biol Chem ; 288(7): 4538-48, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23264627

RESUMEN

In the central nervous system (CNS), fast neuronal signals are facilitated by the oligodendrocyte-produced myelin sheath. Oligodendrocyte turnover or injury generates myelin debris that is usually promptly cleared by phagocytic cells. Failure to remove dying oligodendrocytes leads to accumulation of degraded myelin, which, if recognized by the immune system, may contribute to the development of autoimmunity in diseases such as multiple sclerosis. We recently identified low density lipoprotein receptor-related protein-1 (LRP1) as a novel phagocytic receptor for myelin debris. Here, we report characterization of the LRP1 interactome in CNS myelin. Fusion proteins were designed corresponding to the extracellular ligand-binding domains of LRP1. LRP1 partners were isolated by affinity purification and characterized by mass spectrometry. We report that LRP1 binds intracellular proteins via its extracellular domain and functions as a receptor for necrotic cells. Peptidyl arginine deiminase-2 and cyclic nucleotide phosphodiesterase are novel LRP1 ligands identified in our screen, which interact with full-length LRP1. Furthermore, the extracellular domain of LRP1 is a target of peptidyl arginine deiminase-2-mediated deimination in vitro. We propose that LRP1 functions as a receptor for endocytosis of intracellular components released during cellular damage and necrosis.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Vaina de Mielina/metabolismo , Animales , Apoptosis , Citrulina/química , Clonación Molecular , Endocitosis , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Humanos , Células Jurkat , Ligandos , Espectrometría de Masas/métodos , Ratones , Esclerosis Múltiple/metabolismo , Necrosis , Fagocitosis , Proteómica/métodos
7.
Sci Rep ; 12(1): 8594, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597802

RESUMEN

Current treatments for major depressive disorder are limited to neuropharmacological approaches and are ineffective for large numbers of patients. Recently, alternative means have been explored to understand the etiology of depression. Specifically, changes in the microbiome and immune system have been observed in both clinical settings and in mouse models. As such, microbial supplements and probiotics have become a target for potential therapeutics. A current hypothesis for the mechanism of action of these supplements is via the aryl hydrocarbon receptor's (Ahr) modulation of the T helper 17 cell (Th17) and T regulatory cell axis. As inflammatory RORγt + CD4 + Th17 T cells and their primary cytokine IL-17 have been implicated in the development of stress-induced depression, the connection between stress, the Ahr, Th17s and depression remains critical to understanding mood disorders. Here, we utilize genetic knockouts to examine the role of the microbial sensor Ahr in the development of stressinduced despair behavior. We observe an Ahr-independent increase in gut-associated Th17s in stressed mice, indicating that the Ahr is not responsible for this communication. Further, we utilized a CD4-specific RAR Related Orphan Receptor C (Rorc) knockout line to disrupt the production of Th17s. Mice lacking Rorc-produced IL-17 did not show any differences in behavior before or after stress when compared to controls. Finally, we utilize an unsupervised machine learning system to examine minute differences in behavior that could not be observed by traditional behavioral assays. Our data demonstrate that neither CD4 specific Ahr nor Rorc are necessary for the development of stress-induced anxiety- or depressive-like behaviors. These data suggest that research approaches should focus on other sources or sites of IL-17 production in stress-induced depression.


Asunto(s)
Trastorno Depresivo Mayor , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Animales , Linfocitos T CD4-Positivos , Trastorno Depresivo Mayor/metabolismo , Humanos , Interleucina-17/metabolismo , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Células Th17
8.
bioRxiv ; 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35043113

RESUMEN

Survivors of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection frequently experience lingering neurological symptoms, including impairment in attention, concentration, speed of information processing and memory. This long-COVID cognitive syndrome shares many features with the syndrome of cancer therapy-related cognitive impairment (CRCI). Neuroinflammation, particularly microglial reactivity and consequent dysregulation of hippocampal neurogenesis and oligodendrocyte lineage cells, is central to CRCI. We hypothesized that similar cellular mechanisms may contribute to the persistent neurological symptoms associated with even mild SARS-CoV-2 respiratory infection. Here, we explored neuroinflammation caused by mild respiratory SARS-CoV-2 infection - without neuroinvasion - and effects on hippocampal neurogenesis and the oligodendroglial lineage. Using a mouse model of mild respiratory SARS-CoV-2 infection induced by intranasal SARS-CoV-2 delivery, we found white matter-selective microglial reactivity, a pattern observed in CRCI. Human brain tissue from 9 individuals with COVID-19 or SARS-CoV-2 infection exhibits the same pattern of prominent white matter-selective microglial reactivity. In mice, pro-inflammatory CSF cytokines/chemokines were elevated for at least 7-weeks post-infection; among the chemokines demonstrating persistent elevation is CCL11, which is associated with impairments in neurogenesis and cognitive function. Humans experiencing long-COVID with cognitive symptoms (48 subjects) similarly demonstrate elevated CCL11 levels compared to those with long-COVID who lack cognitive symptoms (15 subjects). Impaired hippocampal neurogenesis, decreased oligodendrocytes and myelin loss in subcortical white matter were evident at 1 week, and persisted until at least 7 weeks, following mild respiratory SARS-CoV-2 infection in mice. Taken together, the findings presented here illustrate striking similarities between neuropathophysiology after cancer therapy and after SARS-CoV-2 infection, and elucidate cellular deficits that may contribute to lasting neurological symptoms following even mild SARS-CoV-2 infection.

9.
Sci Signal ; 13(655)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109748

RESUMEN

Small molecules that promote the metabolic activity of the pyruvate kinase isoform PKM2, such as TEPP-46 and DASA-58, limit tumorigenesis and inflammation. To understand how these compounds alter T cell function, we assessed their therapeutic activity in a mouse model of T cell-mediated autoimmunity that mimics multiple sclerosis (MS). TH17 cells are believed to orchestrate MS pathology, in part, through the production of two proinflammatory cytokines: interleukin-17 (IL-17) and GM-CSF. We found that both TEPP-46 and DASA-58 suppressed the development of IL-17-producing TH17 cells but increased the generation of those producing GM-CSF. This switch redirected disease pathology from the spinal cord to the brain. In addition, we found that activation of PKM2 interfered with TGF-ß1 signaling, which is necessary for the development of TH17 and regulatory T cells. Collectively, our data clarify the therapeutic potential of PKM2 activators in MS-like disease and how these agents alter T cell function.


Asunto(s)
Diferenciación Celular/inmunología , Esclerosis Múltiple/inmunología , Piruvato Quinasa/inmunología , Transducción de Señal/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Esclerosis Múltiple/genética , Piridazinas/farmacología , Pirroles/farmacología , Piruvato Quinasa/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/inmunología
10.
Sci Transl Med ; 11(478)2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728287

RESUMEN

Sepsis is an often deadly complication of infection in which systemic inflammation damages the vasculature, leading to tissue hypoperfusion and multiple organ failure. Currently, the standard of care for sepsis is predominantly supportive, with few therapeutic options available. Because of increased sepsis incidence worldwide, there is an urgent need for discovery of novel therapeutic targets and development of new treatments. The recently discovered function of the endoplasmic reticulum (ER) in regulation of inflammation offers a potential avenue for sepsis control. Here, we identify the ER-resident protein sigma-1 receptor (S1R) as an essential inhibitor of cytokine production in a preclinical model of septic shock. Mice lacking S1R succumb quickly to hypercytokinemia induced by a sublethal challenge in two models of acute inflammation. Mechanistically, we find that S1R restricts the endonuclease activity of the ER stress sensor IRE1 and cytokine expression but does not inhibit the classical inflammatory signaling pathways. These findings could have substantial clinical implications, as we further find that fluvoxamine, an antidepressant therapeutic with high affinity for S1R, protects mice from lethal septic shock and dampens the inflammatory response in human blood leukocytes. Our data reveal the contribution of S1R to the restraint of the inflammatory response and place S1R as a possible therapeutic target to treat bacterial-derived inflammatory pathology.


Asunto(s)
Endorribonucleasas/metabolismo , Inflamación/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores sigma/metabolismo , Sepsis/metabolismo , Transducción de Señal , Adolescente , Adulto , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Fluvoxamina/farmacología , Células HEK293 , Humanos , Inflamación/sangre , Inflamación/complicaciones , Inflamación/patología , Ligandos , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores sigma/agonistas , Sepsis/sangre , Sepsis/complicaciones , Sepsis/patología , Transducción de Señal/efectos de los fármacos , Adulto Joven , Receptor Sigma-1
12.
J Clin Invest ; 125(2): 699-714, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25607842

RESUMEN

A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration.


Asunto(s)
Axones/inmunología , Lesiones Encefálicas/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Interleucina-4/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Enfermedades Neurodegenerativas/inmunología , Animales , Axones/patología , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Linfocitos T CD4-Positivos/patología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Interleucina-4/genética , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA