Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Fish Shellfish Immunol ; 151: 109687, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866348

RESUMEN

Meningitis caused by Gram-negative bacteria is a serious public health problem, causing morbidity and mortality in both children and adults. Here, we propose a novel experimental model using Nile tilapia (Oreochromis niloticus) to study neuroinflammation. The fish were infected with Aeromonas hydrophila, and the course of infection was monitored in the peripheral blood. Septicemia was obvious in the blood, while in the brain tissue, infection of the meninges was present. The histopathological examination showed suppurative meningitis, and the cellular immune response in the brain tissue during infection was mediated by microglia. These cells were morphologically characterized and phenotyped by MHC class II markers and CD68. The increased production of TNF-α, IL-1ß and iNOS supported the infiltration of these cells during the neuroinflammatory process. In the proteomic analysis of A. hydrophila isolated from brain tissue, we found chemotactic and transport proteins, proteolytic enzymes and enzymes associated with the dismutation of nitric oxide (NO), as well as motor proteins and those responsible for cell division. After characterizing the most abundant proteins during the course of infection, we investigated the druggability index of these proteins and identified promising peptide sequences as molecular targets that are similar among bacteria. Thus, these findings deepened the understanding of the pathophysiology of meningitis caused by A. hydrophila. Moreover, through the proteomics analysis, important mechanisms and pathways used by the pathogen to subvert the host response were revealed, providing insights for the development of novel antibiotics and vaccines.

2.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762197

RESUMEN

The dysregulation of complement system activation usually results in acute or chronic inflammation and can contribute to the development of various diseases. Although the activation of complement pathways is essential for innate defense, exacerbated activity of this system may be harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system may be important tools in therapy for diseases associated with complement system activation. The synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a robust model for studying the complement system. The aim of the present study was to use in silico computational modeling to investigate the hypothesis that these complement system inhibitor peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For this, we analyzed molecular docking interactions between peptides and target molecules. Our study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for therapeutic studies on these inhibitors.


Asunto(s)
Activación de Complemento , Pez Cebra , Animales , Simulación del Acoplamiento Molecular , Simulación por Computador , Inactivadores del Complemento/farmacología
3.
Fish Shellfish Immunol ; 130: 323-331, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122633

RESUMEN

To identify activation pathways and effector mechanisms of innate immunity in fish has become relevant for the sanitary management of intensive fish farming. However, little is known about the blocking of cysteinyl leukotrienes receptors (CysLTRs) and their effects in teleost fish. Our study evaluated the anti-inflammatory effect of 250 and 500 µg zafirlukast (antagonist of CysLTRs)/kg b.w., administered orally in the diet, during acute inflammatory reaction induced by Aeromonas hydrophila bacterins in Oreochromis niloticus. 80 tilapia were distributed in 10 aquariums (100L of water each, n = 8) to constitute three treatments: Control (inoculated with A. hydrophila bacterin and untreated); Treated with 250 µg or 500 µg of zafirlukast/kg b.w. and inoculated. To be evaluated in three periods: 6, 24 and 48 h post-inoculation (HPI), totaling nine aquariums. A tenth group was sampled without any stimulus to constitute reference values (Physiological standards). Tilapia treated with zafirlukast demonstrated dose-response effect in the decrease of accumulated inflammatory cells, strongly influenced by granulocytes and macrophages. Zafirlukast treated-tilapia showed decrease in blood leukocyte counts (mainly neutrophils, and monocytes) and reactive oxygen species production. Treatment with zafirlukast resulted in down-regulation of ceruloplasmin, complement 3, alpha2-macroglobulin, transferrin and apolipoprotein A1, as well as up-regulation of haptoglobin. Our study provided convincing results in the pathophysiology of tilapia inflammatory reaction, considering that treatment with zafirlukast, antagonist of cysteinyl leukotriene receptors, resulted in a dose-response effect by suppressing the dynamics between leukocytes in the bloodstream and cell accumulation in the inflamed focus, as well as modulated the leukocyte oxidative burst and the acute phase protein response.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , alfa 2-Macroglobulinas Asociadas al Embarazo , Tilapia , Aeromonas hydrophila/fisiología , Animales , Antiinflamatorios , Apolipoproteína A-I , Vacunas Bacterianas , Ceruloplasmina , Complemento C3 , Femenino , Haptoglobinas , Indoles , Fenilcarbamatos , Embarazo , Especies Reactivas de Oxígeno , Receptores de Leucotrienos/genética , Sulfonamidas , Transferrinas , Agua
4.
J Sci Food Agric ; 102(10): 4287-4295, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35038166

RESUMEN

BACKGROUND: Astaxanthin, classified as a xanthophyll, has antioxidant properties about 500 times greater than α-tocopherols and ten times greater than ß-carotenes. Based on the antioxidant activity of this carotenoid, this study aimed to evaluate the shelf-life of tilapia fillets (Oreochromis niloticus) fed with astaxanthin, by determining the microbiological quality (colimetry, counts of mesophilic and psychrotrophic microorganisms), physicochemical analyses (colorimetry, pH, thiobarbituric acid reactive substances (TBARS)) and sensory analysis. RESULTS: Tilapia supplemented with astaxanthin presented a reduction in the counts of microorganisms (mesophiles and psychrotrophics) and lower lipid oxidation index (TBARS), when compared to fillets of control fish. Colorimetric changes of fillet degradation were observed, associated with increased pH during storage, as well as loss of brightness and texture in addition to worsening of appearance and odor. These deteriorating changes were minimized using astaxanthin. CONCLUSION: Our results demonstrate the beneficial performance of astaxanthin in the shelf-life of tilapia fillets stored under refrigeration. Therefore, dietary supplementation with astaxanthin (100 and 200 mg kg-1 of feed) improves the microbiological and physicochemical quality of tilapia fillets during 50 days of shelf-life. © 2022 Society of Chemical Industry.


Asunto(s)
Tilapia , Animales , Conservación de Alimentos/métodos , Refrigeración , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Xantófilas/análisis
5.
Fish Shellfish Immunol ; 118: 34-50, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34464686

RESUMEN

Group B Streptococcus (GBS) causes meningitis in neonates and Nile tilapia (Oreochromis niloticus). The molecular mechanisms regulating the intracellular survival of this pathogen in the host cell are complex and crucial for the progression of infection. Thus, we propose the use of GBS-infected Nile tilapia microglia as an in vitro model system simulating infection caused by homologous bacteria in humans. We used this model to evaluate the phagocytic activity, as well as the functional aspects of the capsular proteins A, B, C, and D and the major redox enzymes, and the synergistic role of mechanisms/proteins involved in blocking phagocytic process. We observed that in the intracellular phase, GBS showed enhanced synthesis of the polysaccharide capsule and used superoxide dismutase, thioredoxin, NADH oxidase, and alkyl hydroperoxide reductase to scavenge reactive oxygen species and reactive nitrogen species produced by the host cell. Furthermore, although these virulence mechanisms were effective during the initial hours of infection, they were not able to subvert microglial responses, which partially neutralized the infection. Altogether, our findings provided important information regarding the intracellular survival mechanisms of GBS and perspectives for the production of new drugs and vaccines, through the druggability analysis of specific proteins. In conclusion, tilapia microglia serve as a potent in vitro experimental model for the study of meningitis.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Enfermedades de los Peces/microbiología , Microglía , Oxidación-Reducción , Proteómica , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae
6.
Fish Shellfish Immunol ; 115: 134-141, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34098067

RESUMEN

Streptococcosis causes great economic losses in intensive culture of tilapia. Vaccination is the most effective and safest way to tackle infectious diseases. Thus, this study sought the more effective and safer antigenic fraction after sonication of Streptococcus agalactiae to elaborate a vaccine against streptococcosis in Nile tilapia. For this, twenty-one days after vaccination with different fractions (soluble and insoluble) of S. agalactiae, the fish were challenged with the homologous strain (LD50). Then, samples were taken at zero, 14, 28, 60 and 90 days post-vaccination (DPV, n = 7). Blood and organs (cranial kidney, spleen and liver) were collected from vaccinated and unvaccinated fish. Finally, insoluble fraction vaccine presented the best effect, resulting in a 100% relative percent of survival (RPS) and without clinical manifestations. In view of the results, it was to evaluate the role of the insoluble fraction of the antigen in the protective immunity against streptococcosis. The results indicate that the spleen might be the main organ in the vaccine response in Nile tilapia due to the great morphological and immunological differences in vaccinated fish, evidenced by the greater of melanomacrophage centers (MMC) and IgM + lymphocytes in relation to the non-vaccinated fish. At 60 DPV, it was observed the peak of the protective immunity related to the maximum concentration of proteins, circulating leukocytes, antibody titers in the serum and tissue changes with greater expression of IgM + and MMC number in the spleen and kidney of Oreochromis niloticus. Vaccination with insoluble fraction of S. agalactiae was safe and provided effective protection against streptococcosis with maximum protective response at 60 DPV.


Asunto(s)
Antígenos Bacterianos/administración & dosificación , Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Inmunogenicidad Vacunal , Vacunas Estreptocócicas/administración & dosificación , Streptococcus agalactiae/inmunología , Vacunación/veterinaria , Animales , Sonicación/veterinaria , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/veterinaria
7.
Fish Shellfish Immunol ; 107(Pt A): 230-237, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33039531

RESUMEN

In order to understand events and mechanisms present in the pathophysiology of tilapia's chronic inflammation and based on the immunomodulatory activity attributed to cyclophosphamide which is widely used to suppress immune responses in human medicine, the present study investigated the effects of cyclophosphamide (CYP) treatment on the modulation of foreign body inflammatory reaction in Nile tilapia (Oreochromis niloticus) with round glass coverslip implanted in the subcutaneous tissue (9 mm of diameter). Forty tilapia (151 ± 10,2 g) were randomly distributed in 5 aquariums (n = 8) with a capacity of 250 L of water each, to compose two treatments (sampled 3 and 6 days post-implantation): implanted/untreated (control) and implanted/treated with 200 mg of CYP kg-1 of b.w., through i.p. route. A fifth group (n = 8) was sampled without any stimulus (naive) to obtain reference values. CYP-treated tilapia showed decrease in macrophage accumulation, giant cell formation and Langhans cells on the glass coverslip when compared to control fish. The treatment with CYP resulted in decrease of leukocyte and thrombocyte counts. Decrease in alpha-2-macroglobulin, ceruloplasmin, albumin and transferrin levels, as well as increase in haptoglobin, complement C3 and apolipoprotein A1 were observed in tilapias during foreign body inflammation. Blood levels of complement C3, alpha-2-macroglobulin, ceruloplasmin and transferrin were modulated by treatment with CYP. Therefore, the treatment with 200 mg of CYP kg-1 of b.w. in tilapia resulted in an anti-inflammatory effect by suppressing the dynamics between leukocytes in the bloodstream and macrophage accumulation with giant cell formation in the inflamed focus, as well as by modulating APPs during foreign body reaction.


Asunto(s)
Cíclidos/inmunología , Ciclofosfamida/farmacología , Enfermedades de los Peces/inmunología , Reacción a Cuerpo Extraño/veterinaria , Inmunidad Innata , Inmunosupresores/farmacología , Animales , Reacción a Cuerpo Extraño/inmunología
8.
Sci Rep ; 13(1): 8060, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198208

RESUMEN

Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Pez Cebra , Macrófagos , Péptidos
9.
Sci Rep ; 12(1): 3890, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273234

RESUMEN

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab')2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab')2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.


Asunto(s)
COVID-19/terapia , Inmunoglobulinas/uso terapéutico , Receptores Inmunológicos/uso terapéutico , SARS-CoV-2/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Caballos/inmunología , Humanos , Inmunoglobulinas/inmunología , Inmunoglobulinas/aislamiento & purificación , Masculino , Mesocricetus/inmunología , Plasmaféresis/veterinaria , Receptores Inmunológicos/inmunología
10.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34942250

RESUMEN

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Femenino , Humanos , SARS-CoV-2 , Pez Cebra
11.
Animals (Basel) ; 10(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233716

RESUMEN

Streptococcus agalactiae (Sta) of Lancefield group B is the primary etiological agent of bacterial meningitis in Nile tilapia and newborn humans. Thus, the study of this disease is of fundamental importance for aquaculture and human medicine. Additionally, elucidation of the mechanisms involved in the host-pathogenic response is important for the success of new therapies. In the present study, we elucidated important aspects of the innate immune response in the brain tissue of Nile tilapia (Oreochromis niloticus) infected by Sta. The neuroinflammatory process in the meninges started with the migration of MHC class II and CD68 + cells, production of TNF-alpha, and the effective immune response to Sta was mediated by the increased iNOs+. In conclusion, the present study brings a partial understanding of the pathophysiological and neuroinflammatory mechanisms in meningitis in Sta infected tilapia, enabling important advances in the therapy of this disease as well as the possibility of using this biological model to understand human meningitis.

12.
PLoS One ; 15(9): e0238823, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970684

RESUMEN

Mucoadhesive polymeric nanocapsules have attracted interest of researchers from different fields from natural sciences because of their ability to interact with the mucosa and increase drug permeation. Anesthesia by immersion causes absorption through the skin and gills of fish, so it is important to evaluate the exposure of these organs to drug nanosystems. Benzocaine (BENZ) is one of the most popular anesthetic agents used in fish anesthesia, but it has drawbacks because of its low bioavailability, resulting in weak absorption after immersion. Here we describe method developed for preparing and characterizing chitosan-coated PLGA mucoadhesive nanoparticles containing BENZ (NPMAs) for zebrafish immersion anesthesia. We determined the lowest effective concentration, characterized the interaction of the mucoadhesive system with fish, measured the anesthetic efficacy, and evaluated possible toxic effects in embryos and adults exposed to the nanoformulations. This study opens perspectives for using nanoformulations prepared with BENZ in aquaculture, allowing reduction of dosage as well as promoting more effective anesthesia and improved interaction with the mucoadhesive system of fish.


Asunto(s)
Anestesia/veterinaria , Benzocaína/administración & dosificación , Nanocápsulas/administración & dosificación , Pez Cebra , Animales , Acuicultura , Quitosano/administración & dosificación , Quitosano/toxicidad , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Branquias/efectos de los fármacos , Nanocápsulas/toxicidad , Piel/efectos de los fármacos
16.
Braz. j. vet. res. anim. sci ; 52(1): 57-62, abr. 2015. ilus, tab
Artículo en Inglés | LILACS | ID: lil-786779

RESUMEN

Environmental changes affect fish homeostasis, turning them more susceptible to diseases. In Brazil, outbreaks of Streptococcus agalactiae infection have been reported in Nile tilapia when they are outside of their thermal comfort zone. This investigation evaluated mortality rate and which were the most infected organs at temperatures that naturally occurred in southern of Brazil. Forty Nile tilapia (Oreochromis niloticus) were infected with S. agalactiae and distributed in four groups (n=10) and each group was exposed to a different temperature: G1: 24°C, G2: 26°C, G3: 28°C, and G4: 32°C. Fish were monitored for 10 days. In this period, fish that presented irreversible clinical signs were sacrificed and samples of brain, liver, and kidney were collected for bacteriological and molecular analysis. Signs compatible with a streptococcal infection were observed in all groups. Highest mortality rates occurred at 24°C and 32°C. The brain was the most affected organ with the highest percentage of isolation of S. agalactiae by both methods of diagnosis. The results suggest that, as in mammals, temperatures that are further away from the comfort zone influence fish homeostasis, increasing susceptibility to bacterial infections.


Mudanças ambientais afetam a homeostase dos peixes, tornando-os mais suscetíveis a doenças. No Brasil, têm sido relatados surtos de infecção por Streptococcus agalactiae em tilápia do Nilo, principalmente quando se encontram fora da zona de conforto térmico. No presente trabalho, foi avaliada a taxa de mortalidade e determinado quais foram os órgãos mais afetados por essa bactéria em temperaturas que ocorrem naturalmente no Sul do Brasil. Quarenta tilápias-do-nilo (Oreochromis niloticus) foram infectadas por Streptococcus agalactiae e distribuídas em quatro grupos (n = 10), cada um deles submetidos a diferentes temperaturas: G1: 24°C, G2: 26°C, G3: 28°C e G4: 32°C. Os peixes foram monitorados durante 10 dias. Os peixes com sinais clínicos irreversíveis foram sacrificados e coletadas amostras de cérebro, fígado e rins para análise bacteriológica e molecular. Foram observados sinais compatíveis com infecção estreptocócica em todos os grupos. A taxa de mortalidade mais elevada ocorreu nos grupos mantidos nas temperaturas de 24°C e 32°C. O cérebro foi o órgão mais afetado, com a maior percentagem de isolamento de S. agalactiae pelos dois métodos de diagnóstico. Os resultados sugerem que, tal como nos mamíferos, temperaturas que estão mais afastadas da zona de conforto afetam significativamente a homeostase dos peixes, aumentando a sua susceptibilidade para infecções bacterianas.


Asunto(s)
Animales , Cíclidos , Mortalidad , Streptococcus agalactiae/patogenicidad , Trastornos de Estrés por Calor/veterinaria , Homeostasis , Streptococcus agalactiae/aislamiento & purificación , Trastornos de Estrés por Calor/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA