Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Cell Physiol ; 308(8): C581-93, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25673771

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease that, if left untreated, eventually leads to right heart failure and death. Elevated pulmonary arterial pressure (PAP) in patients with PAH is mainly caused by an increase in pulmonary vascular resistance (PVR). Sustained vasoconstriction and excessive pulmonary vascular remodeling are two major causes for elevated PVR in patients with PAH. Excessive pulmonary vascular remodeling is mediated by increased proliferation of pulmonary arterial smooth muscle cells (PASMC) due to PASMC dedifferentiation from a contractile or quiescent phenotype to a proliferative or synthetic phenotype. Increased cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in PASMC is a key stimulus for cell proliferation and this phenotypic transition. Voltage-dependent Ca(2+) entry (VDCE) and store-operated Ca(2+) entry (SOCE) are important mechanisms for controlling [Ca(2+)]cyt. Stromal interacting molecule proteins (e.g., STIM2) and Orai2 both contribute to SOCE and we have previously shown that STIM2 and Orai2, specifically, are upregulated in PASMC from patients with idiopathic PAH and from animals with experimental pulmonary hypertension in comparison to normal controls. In this study, we show that STIM2 and Orai2 are upregulated in proliferating PASMC compared with contractile phenotype of PASMC. Additionally, a switch in Ca(2+) regulation is observed in correlation with a phenotypic transition from contractile PASMC to proliferative PASMC. PASMC in a contractile phenotype or state have increased VDCE, while in the proliferative phenotype or state PASMC have increased SOCE. The data from this study indicate that upregulation of STIM2 and Orai2 is involved in the phenotypic transition of PASMC from a contractile state to a proliferative state; the enhanced SOCE due to upregulation of STIM2 and Orai2 plays an important role in PASMC proliferation.


Asunto(s)
Canales de Calcio/biosíntesis , Hipertensión Pulmonar/metabolismo , Glicoproteínas de Membrana/biosíntesis , Miocitos del Músculo Liso/citología , Canales Catiónicos TRPC/biosíntesis , Remodelación Vascular/fisiología , Animales , Calcio/metabolismo , Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/genética , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/fisiología , Desdiferenciación Celular , Proliferación Celular , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Músculo Liso Vascular/citología , Nifedipino/farmacología , Proteína ORAI2 , Arteria Pulmonar/citología , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Molécula de Interacción Estromal 2 , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Factor de Crecimiento Transformador beta/farmacología , Resistencia Vascular , Vasoconstricción
2.
Circ Res ; 111(4): 469-81, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22730443

RESUMEN

RATIONALE: A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. Increased resting [Ca(2+)](cyt) and enhanced Ca(2+) influx have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH). OBJECTIVE: We examined whether the extracellular Ca(2+)-sensing receptor (CaSR) is involved in the enhanced Ca(2+) influx and proliferation in IPAH-PASMC and whether blockade of CaSR inhibits experimental pulmonary hypertension. METHODS AND RESULTS: In normal PASMC superfused with Ca(2+)-free solution, addition of 2.2 mmol/L Ca(2+) to the perfusate had little effect on [Ca(2+)](cyt). In IPAH-PASMC, however, restoration of extracellular Ca(2+) induced a significant increase in [Ca(2+)](cyt). Extracellular application of spermine also markedly raised [Ca(2+)](cyt) in IPAH-PASMC but not in normal PASMC. The calcimimetic R568 enhanced, whereas the calcilytic NPS 2143 attenuated, the extracellular Ca(2+)-induced [Ca(2+)](cyt) rise in IPAH-PASMC. Furthermore, the protein expression level of CaSR in IPAH-PASMC was greater than in normal PASMC; knockdown of CaSR in IPAH-PASMC with siRNA attenuated the extracellular Ca(2+)-mediated [Ca(2+)](cyt) increase and inhibited IPAH-PASMC proliferation. Using animal models of pulmonary hypertension, our data showed that CaSR expression and function were both enhanced in PASMC, whereas intraperitoneal injection of the calcilytic NPS 2143 prevented the development of pulmonary hypertension and right ventricular hypertrophy in rats injected with monocrotaline and mice exposed to hypoxia. CONCLUSIONS: The extracellular Ca(2+)-induced increase in [Ca(2+)](cyt) due to upregulated CaSR is a novel pathogenic mechanism contributing to the augmented Ca(2+) influx and excessive PASMC proliferation in patients and animals with pulmonary arterial hypertension.


Asunto(s)
Señalización del Calcio , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores Sensibles al Calcio/metabolismo , Vasoconstricción , Compuestos de Anilina/farmacología , Animales , Calcimiméticos/farmacología , Señalización del Calcio/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/prevención & control , Hipoxia/complicaciones , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocrotalina , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Naftalenos/farmacología , Fenetilaminas , Propilaminas , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores Sensibles al Calcio/efectos de los fármacos , Receptores Sensibles al Calcio/genética , Espermina/farmacología , Factores de Tiempo , Transfección , Vasoconstricción/efectos de los fármacos
6.
J Signal Transduct ; 2012: 951497, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056939

RESUMEN

Pulmonary circulation is an important circulatory system in which the body brings in oxygen. Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that predominantly affects women. Sustained pulmonary vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness are the major causes for the elevated pulmonary vascular resistance (PVR) in patients with PAH. The elevated PVR causes an increase in afterload in the right ventricle, leading to right ventricular hypertrophy, right heart failure, and eventually death. Understanding the pathogenic mechanisms of PAH is important for developing more effective therapeutic approach for the disease. An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC migration and proliferation which lead to pulmonary vascular wall thickening and remodeling. It is thus pertinent to define the pathogenic role of Ca(2+) signaling in pulmonary vasoconstriction and PASMC proliferation to develop new therapies for PAH. [Ca(2+)](cyt) in PASMC is increased by Ca(2+) influx through Ca(2+) channels in the plasma membrane and by Ca(2+) release or mobilization from the intracellular stores, such as sarcoplasmic reticulum (SR) or endoplasmic reticulum (ER). There are two Ca(2+) entry pathways, voltage-dependent Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCC) and voltage-independent Ca(2+) influx through store-operated Ca(2+) channels (SOC) and receptor-operated Ca(2+) channels (ROC). This paper will focus on the potential role of VDCC, SOC, and ROC in the development and progression of sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in PAH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA