Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 41(13): e108595, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35634969

RESUMEN

Bacteria require a number of systems, including the type VI secretion system (T6SS), for interbacterial competition and pathogenesis. The T6SS is a large nanomachine that can deliver toxins directly across membranes of proximal target cells. Since major reassembly of T6SS is necessary after each secretion event, accurate timing and localization of T6SS assembly can lower the cost of protein translocation. Although critically important, mechanisms underlying spatiotemporal regulation of T6SS assembly remain poorly understood. Here, we used super-resolution live-cell imaging to show that while Acinetobacter and Burkholderia thailandensis can assemble T6SS at any site, a significant subset of T6SS assemblies localizes precisely to the site of contact between neighboring bacteria. We identified a class of diverse, previously uncharacterized, periplasmic proteins required for this dynamic localization of T6SS to cell-cell contact (TslA). This precise localization is also dependent on the outer membrane porin OmpA. Our analysis links transmembrane communication to accurate timing and localization of T6SS assembly as well as uncovers a pathway allowing bacterial cells to respond to cell-cell contact during interbacterial competition.


Asunto(s)
Sistemas de Secreción Tipo VI , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte de Proteínas , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
2.
Mol Cell ; 63(2): 293-305, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27397684

RESUMEN

Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position.


Asunto(s)
Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Reparación del ADN , Heterocromatina/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sistemas CRISPR-Cas , Centrómero/química , Centrómero/genética , Reparación del ADN por Unión de Extremidades , Fase G2 , Heterocromatina/química , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Ratones , Células 3T3 NIH , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Reparación del ADN por Recombinación , Fase S , Factores de Tiempo , Transfección
3.
PLoS Biol ; 18(8): e3000762, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760088

RESUMEN

Centrosomes, the main microtubule organizing centers (MTOCs) of metazoan cells, contain an older "mother" and a younger "daughter" centriole. Stem cells either inherit the mother or daughter-centriole-containing centrosome, providing a possible mechanism for biased delivery of cell fate determinants. However, the mechanisms regulating centrosome asymmetry and biased centrosome segregation are unclear. Using 3D-structured illumination microscopy (3D-SIM) and live-cell imaging, we show in fly neural stem cells (neuroblasts) that the mitotic kinase Polo and its centriolar protein substrate Centrobin (Cnb) accumulate on the daughter centriole during mitosis, thereby generating molecularly distinct mother and daughter centrioles before interphase. Cnb's asymmetric localization, potentially involving a direct relocalization mechanism, is regulated by Polo-mediated phosphorylation, whereas Polo's daughter centriole enrichment requires both Wdr62 and Cnb. Based on optogenetic protein mislocalization experiments, we propose that the establishment of centriole asymmetry in mitosis primes biased interphase MTOC activity, necessary for correct spindle orientation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mitosis , Proteínas Serina-Treonina Quinasas/genética , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/ultraestructura , Centrosoma/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interfase , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Optogenética/métodos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína Fluorescente Roja
4.
J Microsc ; 284(1): 56-73, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34214188

RESUMEN

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.


Asunto(s)
Microscopía , Estándares de Referencia , Reproducibilidad de los Resultados
7.
FEBS J ; 291(3): 477-488, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37984833

RESUMEN

Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.


Asunto(s)
Laminina , Humanos , Animales , Membrana Basal/química , Microscopía de Fuerza Atómica , Laminina/análisis
8.
Biol Cell ; 101(4): 221-35, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18710370

RESUMEN

BACKGROUND INFORMATION: The role of the LIM-domain-containing protein Ajuba was initially described in cell adhesion and migration processes and recently in mitosis as an activator of the Aurora A kinase. RESULTS: In the present study, we show that Ajuba localizes to centrosomes and kinetochores during mitosis. This localization is microtubule-dependent and Ajuba binds microtubules in vitro. A microtubule regrowth assay showed that Ajuba follows nascent microtubules from centrosomes to kinetochores. Owing to its contribution to mitotic commitment and its microtubule-dependent localization, Ajuba could also play a role during the metaphase-anaphase transition. We show that Ajuba interacts with Aurora B and BUBR1 [BUB (budding uninhibited by benomyl)-related 1], two major components of the mitotic checkpoint. Inhibition of BUBR1 by siRNA (small interfering RNA) disrupts chromosome alignment at the metaphase plate and modifies Ajuba localization due to premature mitotic exit. CONCLUSIONS: Ajuba is a microtubule-associated protein that collaborates with Aurora B and BUBR1 at the metaphase-anaphase transition and this may be important to ensure proper chromosome segregation.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Cinetocoros/metabolismo , Metafase/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Línea Celular , Centrosoma/metabolismo , Centrosoma/ultraestructura , Complejo Dinactina , Proteínas de Homeodominio/genética , Humanos , Cinetocoros/ultraestructura , Proteínas con Dominio LIM , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/metabolismo
9.
Methods Mol Biol ; 2038: 209-221, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31407287

RESUMEN

In this chapter, we describe an antibody electroporation-based imaging approach that allows for precise imaging and quantification of endogenous transcription factor (i.e., RNA Polymerase II) distributions in single cells using 3D structured illumination microscopy (3D-SIM). The labeling is achieved by the efficient and harmless delivery of fluorescent dye-conjugated antibodies into living cells and the specific binding of these antibodies to the targeted factors. Our step-by-step protocol describes the procedure of the labeling of the specific antibodies, their electroporation into living cells, the sample preparation and 3D-SIM imaging as well as the postimaging analyses of the labeled endogenous transcription factors to obtain information about their nuclear distribution as well as their function. This protocol can be applied to a plethora of endogenous nuclear factors by using target specific noninhibiting antibodies.


Asunto(s)
Anticuerpos/metabolismo , Electroporación , Microscopía Fluorescente , Imagen Molecular/métodos , ARN Polimerasa II/metabolismo , Análisis de la Célula Individual/métodos , Factores de Transcripción/metabolismo , Anticuerpos/inmunología , Línea Celular Tumoral , Colorantes Fluorescentes/química , Humanos , ARN Polimerasa II/genética , Factores de Transcripción/genética
10.
Sci Rep ; 9(1): 1165, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718583

RESUMEN

Confocal microscopy is used today on a daily basis in life science labs. This "routine" technique contributes to the progress of scientific projects across many fields by revealing structural details and molecular localization, but researchers need to be aware that detection efficiency and emission light path performance is of major influence in the confocal image quality. By design, a large portion of the signal is discarded in confocal imaging, leading to a decreased signal-to-noise ratio (SNR) which in turn limits resolution. A well-aligned system and high performance detectors are needed in order to generate an image of best quality. However, a convenient method to address system status and performance on the emission side is still lacking. Here, we present a complete method to assess microscope and emission light path performance in terms of SNR, with a comprehensive protocol alongside NoiSee, an easy-to-use macro for Fiji (available via the corresponding update site). We used this method to compare several confocal systems in our facility on biological samples under typical imaging conditions. Our method reveals differences in microscope performance and highlights the various detector types used (multialkali photomultiplier tube (PMT), gallium arsenide phosphide (GaAsP) PMT, and Hybrid detector). Altogether, our method will provide useful information to research groups and facilities to diagnose their confocal microscopes.

11.
Nat Cell Biol ; 21(1): 72-84, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602772

RESUMEN

Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries.


Asunto(s)
Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Animales , Biología Celular/instrumentación , Humanos , Biología Molecular/instrumentación , Reproducibilidad de los Resultados
12.
J Cell Biol ; 217(4): 1537-1552, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29440513

RESUMEN

Fluorescent labeling of endogenous proteins for live-cell imaging without exogenous expression of tagged proteins or genetic manipulations has not been routinely possible. We describe a simple versatile antibody-based imaging approach (VANIMA) for the precise localization and tracking of endogenous nuclear factors. Our protocol can be implemented in every laboratory allowing the efficient and nonharmful delivery of organic dye-conjugated antibodies, or antibody fragments, into different metazoan cell types. Live-cell imaging permits following the labeled probes bound to their endogenous targets. By using conventional and super-resolution imaging we show dynamic changes in the distribution of several nuclear transcription factors (i.e., RNA polymerase II or TAF10), and specific phosphorylated histones (γH2AX), upon distinct biological stimuli at the nanometer scale. Hence, considering the large panel of available antibodies and the simplicity of their implementation, VANIMA can be used to uncover novel biological information based on the dynamic behavior of transcription factors or posttranslational modifications in the nucleus of single live cells.


Asunto(s)
Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente Directa , Histonas/metabolismo , Microscopía Confocal , Análisis de la Célula Individual/métodos , Factores de Transcripción/metabolismo , Animales , Apoptosis , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Núcleo Celular/patología , Proliferación Celular , Fibroblastos/metabolismo , Humanos , Cinética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Fosforilación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética
13.
Oncogene ; 23(26): 4516-22, 2004 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15064709

RESUMEN

Taxins are a family of centrosomal proteins important for the regulation of mitosis and microtubule dynamics. Cytokinesis, the last step of M phase, is essential for chromosomal integrity and cell division. It is highly regulated and involves a reorganization of microtubules and actin filaments. We show here that TACC1 localizes diffusely to the midzone spindle in anaphase and strongly to the midbody during cytokinesis, indicating a possible involvement of this protein in the exit of M phase. TACC1 also relocalizes to the nucleolus in interphase. We demonstrate that TACC1 and the mitotic kinase Aurora B belong to the same complex during cytokinesis. We further show that Aurora B knocked down by RNA-mediated interference prevents the formation of the midbody - and consequently affects TACC1 localization at this site - and leads to abnormal cell division and multinucleated cells.


Asunto(s)
Proteínas Fetales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Anafase , Aurora Quinasa B , Aurora Quinasas , División Celular/fisiología , Núcleo Celular/genética , Proteínas Fetales/genética , Células HeLa , Humanos , Sustancias Macromoleculares , Proteínas Asociadas a Microtúbulos/genética , Mitosis/fisiología , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Interferencia de ARN , Huso Acromático/metabolismo
14.
Oncogene ; 22(50): 8102-16, 2003 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-14603251

RESUMEN

The three human TACC (transforming acidic coiled-coil) genes encode a family of proteins with poorly defined functions that are suspected to play a role in oncogenesis. A Xenopus TACC homolog called Maskin is involved in translational control, while Drosophila D-TACC interacts with the microtubule-associated protein MSPS (Mini SPindleS) to ensure proper dynamics of spindle pole microtubules during cell division. We have delineated here the interactions of TACC1 with four proteins, namely the microtubule-associated chTOG (colonic and hepatic tumor-overexpressed gene) protein (ortholog of Drosophila MSPS), the adaptor protein TRAP (tudor repeat associator with PCTAIRE2), the mitotic serine/threonine kinase Aurora A and the mRNA regulator LSM7 (Like-Sm protein 7). To measure the relevance of the TACC1-associated complex in human cancer we have examined the expression of the three TACC, chTOG and Aurora A in breast cancer using immunohistochemistry on tissue microarrays. We show that expressions of TACC1, TACC2, TACC3 and Aurora A are significantly correlated and downregulated in a subset of breast tumors. Using siRNAs, we further show that depletion of chTOG and, to a lesser extent of TACC1, perturbates cell division. We propose that TACC proteins, which we also named 'Taxins', control mRNA translation and cell division in conjunction with microtubule organization and in association with chTOG and Aurora A, and that these complexes and cell processes may be affected during mammary gland oncogenesis.


Asunto(s)
Neoplasias de la Mama/enzimología , Proteínas Fetales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Aurora Quinasa A , Aurora Quinasas , Neoplasias de la Mama/metabolismo , Células CACO-2 , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Femenino , Células HeLa , Humanos , Filogenia , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Proteínas de Xenopus
15.
Nat Commun ; 6: 6551, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25791062

RESUMEN

Precise cleavage furrow positioning is required for faithful chromosome segregation and cell fate determinant distribution. In most metazoan cells, contractile ring placement is regulated by the mitotic spindle through the centralspindlin complex, and potentially also the chromosomal passenger complex (CPC). Drosophila neuroblasts, asymmetrically dividing neural stem cells, but also other cells utilize both spindle-dependent and spindle-independent cleavage furrow positioning pathways. However, the relative contribution of each pathway towards cytokinesis is currently unclear. Here we report that in Drosophila neuroblasts, the mitotic spindle, but not polarity cues, controls the localization of the CPC component Survivin. We also show that Survivin and the mitotic spindle are required to stabilize the position of the cleavage furrow in late anaphase and to complete furrow constriction. These results support the model that two spatially and temporally separate pathways control different key aspects during asymmetric cell division, ensuring correct cell fate determinant segregation and neuroblast self-renewal.


Asunto(s)
División Celular Asimétrica/fisiología , Citocinesis/fisiología , Proteínas de Drosophila/fisiología , Proteínas Inhibidoras de la Apoptosis/fisiología , Células-Madre Neurales/fisiología , Anafase/fisiología , Animales , Polaridad Celular , Segregación Cromosómica/fisiología , Drosophila , Células-Madre Neurales/citología , Huso Acromático/fisiología , Survivin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA