Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Mater ; 18(11): 1252-1263, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31332337

RESUMEN

During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effects with striking biophysical consequences. Specifically, unjamming in tumour spheroids is accompanied by persistent and coordinated rotations that progressively remodel the extracellular matrix, while simultaneously fluidizing cells at the periphery. This concurrent action results in collective invasion, supporting the concept that the endo-ERK1/2 pathway is a physicochemical switch to initiate collective invasion and dissemination of otherwise jammed carcinoma.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/metabolismo , Humanos , Cinética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas de Unión al GTP rab5/metabolismo
3.
Cancers (Basel) ; 13(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204843

RESUMEN

Due to the high expression of P-selectin glycoprotein ligand-1 (PSGL-1) in lymphoproliferative disorders and in multiple myeloma, it has been considered as a potential target for humoral immunotherapy, as well as an immune checkpoint inhibitor in T-cells. By investigating the expression of SELPLG in 678 T- and B-cell samples by gene expression profiling (GEP), further supported by tissue microarray and immunohistochemical analysis, we identified anaplastic large T-cell lymphoma (ALCL) as constitutively expressing SELPLG at high levels. Moreover, GEP analysis in CD30+ ALCLs highlighted a positive correlation of SELPLG with TNFRSF8 (CD30-coding gene) and T-cell receptor (TCR)-signaling genes (LCK, LAT, SYK and JUN), suggesting that the common dysregulation of TCR expression in ALCLs may be bypassed by the involvement of PSGL-1 in T-cell activation and survival. Finally, we evaluated the effects elicited by in vitro treatment with two anti-PSGL-1 antibodies (KPL-1 and TB5) on the activation of the complement system and induction of apoptosis in human ALCL cell lines. In conclusion, our data demonstrated that PSGL-1 is specifically enriched in ALCLs, altering cell motility and viability due to its involvement in CD30 and TCR signaling, and it might be considered as a promising candidate for novel immunotherapeutic approaches in ALCLs.

4.
Nat Commun ; 11(1): 3516, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665580

RESUMEN

It is unclear whether the establishment of apical-basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. Genetic removal of IRSp53 results in abnormal renal tubulogenesis, with altered tubular polarity and architectural organization. Thus, IRSp53 acts as a membrane curvature-sensing platform for the assembly of multi-protein complexes that control the trafficking of apical determinants and the integrity of the luminal plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Actinas/metabolismo , Polaridad Celular/genética , Polaridad Celular/fisiología , Células Epiteliales/metabolismo , Femenino , Humanos , Morfogénesis/genética , Morfogénesis/fisiología , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Proteínas de Unión al GTP rab/genética
5.
Biochim Biophys Acta Gen Subj ; 1862(12): 2879-2887, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30251702

RESUMEN

BACKGROUND: Virtually all cell types have the capacity to secrete nanometer-sized extracellular vesicles, which have emerged in recent years as potent signal transducers and cell-cell communicators. The multifunctional protein Alix is a bona fide exosomal regulator and skeletal muscle cells can release Alix-positive nano-sized extracellular vesicles, offering a new paradigm for understanding how myofibers communicate within skeletal muscle and with other organs. S-palmitoylation is a reversible lipid post-translational modification, involved in different biological processes, such as the trafficking of membrane proteins, achievement of stable protein conformations, and stabilization of protein interactions. METHODS: Here, we have used an integrated biochemical-biophysical approach to determine whether S-palmitoylation contributes to the regulation of extracellular vesicle production in skeletal muscle cells. RESULTS: We ascertained that Alix is S-palmitoylated and that this post-translational modification influences its protein-protein interaction with CD9, a member of the tetraspanin protein family. Furthermore, we showed that the structural organization of the lipid bilayer of the small (nano-sized) extracellular vesicle membrane with altered palmitoylation is qualitatively different compared to mock control vesicles. CONCLUSIONS: We propose that S-palmitoylation regulates the function of Alix in facilitating the interactions among extracellular vesicle-specific regulators and maintains the proper structural organization of exosome-like extracellular vesicle membranes. GENERAL SIGNIFICANCE: Beyond its biological relevance, our study also provides the means for a comprehensive structural characterization of EVs.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Lipoilación , Procesamiento Proteico-Postraduccional , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Membrana Dobles de Lípidos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Transducción de Señal , Tetraspanina 29/metabolismo
6.
Front Immunol ; 9: 1748, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127783

RESUMEN

Surfactant protein D (SP-D) is a pattern recognition molecule belonging to the Collectin (collagen-containing C-type lectin) family that has pulmonary as well as extra-pulmonary existence. In the lungs, it is a well-established opsonin that can agglutinate a range of microbes, and enhance their clearance via phagocytosis and super-oxidative burst. It can interfere with allergen-IgE interaction and suppress basophil and mast cell activation. However, it is now becoming evident that SP-D is likely to be an innate immune surveillance molecule against tumor development. SP-D has been shown to induce apoptosis in sensitized eosinophils derived from allergic patients and a leukemic cell line via p53 pathway. Recently, SP-D has been shown to suppress lung cancer progression via interference with the epidermal growth factor signaling. In addition, a truncated form of recombinant human SP-D has been reported to induce apoptosis in pancreatic adenocarcinoma via Fas-mediated pathway in a p53-independent manner. To further establish a correlation between SP-D presence/levels and normal and cancer tissues, we performed a bioinformatics analysis, using Oncomine dataset and the survival analysis platforms Kaplan-Meier plotter, to assess if SP-D can serve as a potential prognostic marker for human lung cancer, in addition to human gastric, breast, and ovarian cancers. We also analyzed immunohistochemically the presence of SP-D in normal and tumor human tissues. We conclude that (1) in the lung, gastric, and breast cancers, there is a lower expression of SP-D than normal tissues; (2) in ovarian cancer, there is a higher expression of SP-D than normal tissue; and (3) in lung cancer, the presence of SP-D could be associated with a favorable prognosis. On the contrary, at non-pulmonary sites such as gastric, breast, and ovarian cancers, the presence of SP-D could be associated with unfavorable prognosis. Correlation between the levels of SP-D and overall survival requires further investigation. Our analysis involves a large number of dataset; therefore, any trend observed is reliable. Despite apparent complexity within the results, it is evident that cancer tissues that produce less levels of SP-D compared to their normal tissue counterparts are probably less susceptible to SP-D-mediated immune surveillance mechanisms via infiltrating immune cells.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Biología Computacional , Simulación por Computador , Conjuntos de Datos como Asunto , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Pronóstico , Proteína D Asociada a Surfactante Pulmonar/genética , ARN Neoplásico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Análisis de Supervivencia
7.
Eur J Paediatr Neurol ; 19(4): 477-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25769226

RESUMEN

BACKGROUND: Microscopically chromosome rearrangements of the short arm of chromosome 4 include the two known clinical entities: partial trisomy 4p and deletions of the Wolf-Hirschhorn critical regions 1 and 2 (WHSCR-1 and WHSCR-2, respectively), which cause cranio-facial anomalies, congenital malformations and developmental delay/intellectual disability. METHODS/RESULTS: We report on clinical findings detected in a Chinese patient with a de novo 4p16.1-p15.32 duplication in association with a subtle 4p terminal deletion of 6 Mb in size. This unusual chromosome imbalance resulted in WHS classical phenotype, while clinical manifestations of 4p trisomy were practically absent. CONCLUSION: This observation suggests the hypothesis that haploinsufficiency of sensitive dosage genes with regulatory function placed in WHS critical region, is more pathogenic than concomitant 4p duplicated segment. Additionally clinical findings in our patient confirm a variable penetrance of major malformations and neurological features in Chinese children despite of WHS critical region's deletion.


Asunto(s)
Trastornos de los Cromosomas/genética , Trisomía/genética , Síndrome de Wolf-Hirschhorn/genética , Pueblo Asiatico/genética , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 4/genética , Discapacidades del Desarrollo/genética , Femenino , Genoma Humano , Genotipo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA