Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105647, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219818

RESUMEN

Pea phytoalexins (-)-maackiain and (+)-pisatin have opposite C6a/C11a configurations, but biosynthetically how this occurs is unknown. Pea dirigent-protein (DP) PsPTS2 generates 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene (DMDIF), and stereoselectivity toward four possible 7,2'-dihydroxy-4',5'-methylenedioxyisoflavan-4-ol (DMDI) stereoisomers was investigated. Stereoisomer configurations were determined using NMR spectroscopy, electronic circular dichroism, and molecular orbital analyses. PsPTS2 efficiently converted cis-(3R,4R)-DMDI into DMDIF 20-fold faster than the trans-(3R,4S)-isomer. The 4R-configured substrate's near ß-axial OH orientation significantly enhanced its leaving group abilities in generating A-ring mono-quinone methide (QM), whereas 4S-isomer's α-equatorial-OH was a poorer leaving group. Docking simulations indicated that the 4R-configured ß-axial OH was closest to Asp51, whereas 4S-isomer's α-equatorial OH was further away. Neither cis-(3S,4S)- nor trans-(3S,4R)-DMDIs were substrates, even with the former having C3/C4 stereochemistry as in (+)-pisatin. PsPTS2 used cis-(3R,4R)-7,2'-dihydroxy-4'-methoxyisoflavan-4-ol [cis-(3R,4R)-DMI] and C3/C4 stereoisomers to give 2',7-dihydroxy-4'-methoxyisoflav-3-ene (DMIF). DP homologs may exist in licorice (Glycyrrhiza pallidiflora) and tree legume Bolusanthus speciosus, as DMIF occurs in both species. PsPTS1 utilized cis-(3R,4R)-DMDI to give (-)-maackiain 2200-fold more efficiently than with cis-(3R,4R)-DMI to give (-)-medicarpin. PsPTS1 also slowly converted trans-(3S,4R)-DMDI into (+)-maackiain, reflecting the better 4R configured OH leaving group. PsPTS2 and PsPTS1 provisionally provide the means to enable differing C6a and C11a configurations in (+)-pisatin and (-)-maackiain, via identical DP-engendered mono-QM bound intermediate generation, which PsPTS2 either re-aromatizes to give DMDIF or PsPTS1 intramolecularly cyclizes to afford (-)-maackiain. Substrate docking simulations using PsPTS2 and PsPTS1 indicate cis-(3R,4R)-DMDI binds in the anti-configuration in PsPTS2 to afford DMDIF, and the syn-configuration in PsPTS1 to give maackiain.


Asunto(s)
Pisum sativum , Proteínas de Plantas , Pterocarpanos , Pisum sativum/química , Pisum sativum/metabolismo , Pterocarpanos/química , Pterocarpanos/metabolismo , Estereoisomerismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Modelos Moleculares , Conformación Molecular
2.
Bioorg Med Chem Lett ; 101: 129650, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341161

RESUMEN

Two leuconoxine-type diazaspiroindole alkaloids, the known compound, (+)-melodinine E (1), and its new analogue, (+)-11-chloromelodinine E (2), were isolated from the stems of Cryptolepis dubia (Burm.f.) M.R. Almeida (Apocynaceae), collected in Laos. The chemical structures of these compounds were determined by analysis of their spectroscopic data and by comparison of these data with literature values, of which the molecular structure of 1 has been determined previously by analysis of its single-crystal X-ray diffraction data. The absolute configurations of 1 and 2 have been defined by their experimental and simulated electronic circular dichroism (ECD) spectroscopic data and supported by 1H and 13C NMR-based DP4+ probability analysis and specific rotation calculations. When tested against a small panel of human cancer cell lines, these two compounds exhibited selective cytotoxicity toward OVCAR3 human ovarian cancer cells.


Asunto(s)
Antineoplásicos , Alcaloides Indólicos , Neoplasias Ováricas , Femenino , Humanos , Cryptolepis , Apoptosis , Línea Celular Tumoral , Estructura Molecular
3.
Planta Med ; 90(7-08): 631-640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843801

RESUMEN

Many polyprenylated acylphloroglucinols with fascinating chemical structures and intriguing biological activities have been identified as key to phytochemicals isolated from Garcinia, Hypericum, and related genera. In the present work, two chiral, tautomeric, highly-oxygenated polyprenylated acylphloroglucinols tethered with acyl and prenyl moieties on a bicyclo[3.3.1]nonanetrione core were isolated from the 95% ethanolic extract of Garcinia gummi-gutta fruit. The structures of both compounds were elucidated based on the NMR and MS data with ambiguity in the exact position of the enol and keto functions at C-1 and C-3 of the core structure. The structures of both polyprenylated acylphloroglucinols were established as a structurally revised guttiferone J and the new iso-guttiferone J with the aid of gauge-independent atomic orbital NMR calculations, CP3 probability analyses, specific rotation calculations, and electronic circular dichroism calculations in combination with the experimental data. The structures of both compounds resemble hyperforin, a potent activator of the human pregnane X receptor. As expected, both compounds showed strong pregnane X receptor activation at 10 µM [7.1-fold (guttiferone J) and 5.0-fold (iso-guttiferone J)], explained by a molecular docking study, necessitating further in-depth investigation to substantiate the herb-drug interaction potential of G. gummi-gutta upon co-administration with pharmaceutical drugs.


Asunto(s)
Garcinia , Espectroscopía de Resonancia Magnética , Garcinia/química , Estructura Molecular , Frutas/química , Benzofenonas/química , Benzofenonas/aislamiento & purificación , Benzofenonas/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/farmacología , Floroglucinol/química , Floroglucinol/aislamiento & purificación , Humanos
4.
J Org Chem ; 88(19): 13490-13503, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37748101

RESUMEN

Proanthocyanidins (PACs) are complex flavan-3-ol polymers with stunning chemical complexity due to oxygenation patterns, oxidative phenolic ring linkages, and intricate stereochemistry of their heterocycles and inter-flavan linkages. Being promising candidates for dental restorative biomaterials, trace analysis of dentin bioactive cinnamon PACs now yielded novel trimeric (1 and 2) and tetrameric (3) PACs with unprecedented o- and p-benzoquinone motifs (benzoquinonoid PACs). Challenges in structural characterization, especially their absolute configuration, prompted the development of a new synthetic-analytical approach involving comprehensive spectroscopy, including NMR with quantum mechanics-driven 1H iterative functionalized spin analysis (HifSA) plus experimental and computational electronic circular dichroism (ECD). Vital stereochemical information was garnered from synthesizing 4-(2,5-benzoquinone)flavan-3-ols and a truncated analogue of trimer 2 as ECD models. Discovery of the first natural benzoquinonoid PACs provides new evidence to the experimentally elusive PAC biosynthesis as their formation requires two oxidative post-oligomerizational modifications (POMs) that are distinct and occur downstream from both quinone-methide-driven oligomerization and A-type linkage formation. While Nature is known to achieve structural diversity of many major compound classes by POMs, this is the first indication of PACs also following this common theme.


Asunto(s)
Proantocianidinas , Proantocianidinas/química , Fenoles , Espectroscopía de Resonancia Magnética , Dicroismo Circular
5.
J Nat Prod ; 86(9): 2228-2237, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37638654

RESUMEN

Given that the essence of Science is a search for the truth, one might expect that those identifying as scientists would be conscientious and observant of the demands this places on them. However, that expectation is not fulfilled universally as, not too surprisingly, egregious examples of unethical behavior appear and are driven by money, personal ambition, performance pressure, and other incentives. The reproducibility-, fact-, and truth-oriented modus operandi of Science has come to face a variety of challenges. Organized into 11 cases, this article outlines examples of compromised integrity from borderline to blatant unethical behavior that disgrace our profession unnecessarily. Considering technological developments in neural networks/artificial intelligence, a host of factors are identified as impacting Good Ethical Practices. The goal is manifold: to raise awareness and offer perspectives for refocusing on Science and true scientific evidence; to trigger discussion and developments that strengthen ethical behavior; to foster the recognition of the beauty, simplicity, and rewarding nature of scientific integrity; and to highlight the originality of intelligence.


Asunto(s)
Productos Biológicos , Inteligencia Artificial , Reproducibilidad de los Resultados , Edición , Redes Neurales de la Computación
6.
J Nat Prod ; 85(12): 2753-2768, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36382951

RESUMEN

Investigation of a pine bark extract for bioactive proanthocyanidin oligomers resulted in the isolation of structurally related dimeric seco B-type procyanidin derivatives, 1-5. This includes scalemic mixtures of gambiriin A1 (1a) and A2 (2a) and their newly described optical antipodes, ent-gambiriin A1 (1b) and ent-gambiriin A2 (2b), respectively, as well as a racemic mixture of the newly described (ent-)gambiriin A5 (3a/3b). Furthermore, the study now fully characterizes the previously reported optically pure dimers gambiriin B1 (4) and gambirflavan D1 (5), and characterized the novel seco B-type procyanidin trimer, 6 (gambirifuran C1). Thermal conversion of catechin in aqueous solution provided further evidence for the structures of 1-6 and led to the purification of semisynthetic 1a and 2a as well as additional dimers 7-10. Elucidating the structures of the natural dimers, 1-5, from comprehensive NMR and ECD data and synthetic evidence provided crucial reference points for establishing the structure of the seco B-type procyanidin trimer, 6. Serving as assigned building blocks, data from the dimers supported the 3D structural assignment of 6 based on NMR substituent chemical shift differences (s.c.s., syn. ΔδC) and component-based empirical ECD calculations. Within the newly characterized series of PAC-related molecules, 5 exhibited high dentin biomodification potential. In addition, considering the nomenclature issues and plausible biosynthetic pathways of this group of compounds led to a consolidated nomenclature of all currently known seco B-type procyanidins. These findings, thereby, expand the chemical space of bioactive catechin oligomers, which have promise as agents for the natural enhancement of dental biomaterials. Finally, the current knowledge of the chemical space of seco B-type procyanidin derivatives was compiled to the level of absolute configuration.


Asunto(s)
Biflavonoides , Catequina , Pinus , Proantocianidinas , Proantocianidinas/química , Catequina/química , Biflavonoides/química
7.
Molecules ; 27(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35566223

RESUMEN

Echimidine is the main pyrrolizidine alkaloid of Echium plantagineum L., a plant domesticated in many countries. Because of echimidine's toxicity, this alkaloid has become a target of the European Food Safety Authority regulations, especially in regard to honey contamination. In this study, we determined by NMR spectroscopy that the main HPLC peak purified from zinc reduced plant extract with an MS [M + H]+ signal at m/z 398 corresponding to echimidine (1), and in fact also represents an isomeric echihumiline (2). A third isomer present in the smallest amount and barely resolved by HPLC from co-eluting (1) and (2) was identified as hydroxymyoscorpine (3). Before the zinc reduction, alkaloids (1) and (2) were present mostly (90%) in the form of an N-oxide, which formed a single peak in HPLC. This is the first report of finding echihumiline and hydroxymyoscorpine in E. plantagineum. Retroanalysis of our samples of E. plantagineum collected in New Zealand, Argentina and the USA confirmed similar co-occurrence of the three isomeric alkaloids. In rat hepatocyte primary culture cells, the alkaloids at 3 to 300 µg/mL caused concentration-dependent inhibition of hepatocyte viability with mean IC50 values ranging from 9.26 to 14.14 µg/mL. Our discovery revealed that under standard HPLC acidic conditions, echimidine co-elutes with its isomers, echihumiline and to a lesser degree with hydroxymyoscorpine, obscuring real alkaloidal composition, which may have implications for human toxicity.


Asunto(s)
Echium , Alcaloides de Pirrolicidina , Animales , Echium/química , Hepatocitos/química , Alcaloides de Pirrolicidina/química , Ratas , Zinc
8.
J Nat Prod ; 84(9): 2594-2599, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34427436

RESUMEN

A new benzo[g]isochromene possessing a conformationally mobile moiety was identified from Rubia philippinensis. The 2D structure was established utilizing spectrometric and spectroscopic techniques with variable temperatures. The configurational investigation of the flexible moiety was investigated utilizing contemporary NMR-combined computational tools such as DP4, direct J-DP4, and DP4 Plus. The probabilities computed from DP4 Plus analysis, featuring inclusion of an additional geometry optimization process, demonstrated more conclusive probability scores among the analyses used. The configurational assignment was also supported by compositional and molecular orbital analyses. Compound 1 inhibited soluble epoxide hydrolase (IC50 = 0.6 ± 0.01 µM), an enzyme associated with cardiovascular disorders.


Asunto(s)
Benzopiranos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Rubia/química , Benzopiranos/química , Estructura Molecular , Resinas de Plantas/química , Vietnam
9.
J Nat Prod ; 84(4): 1392-1396, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33734684

RESUMEN

Mirabilis multiflora is an acclaimed hallucinogen consumed traditionally by the Hopi Indians to induce diagnostic visions. Its root extract afforded a new (3) and four known (2, 5, 6, and 7) 12a-hydroxyrotenoids, a known rotenoid (4), and two known secondary metabolites (1 and 8). The structures of the compounds were elucidated based on spectroscopic and spectrometric data analysis. Electronic circular dichroism data were used to define the (6aS,12aR) absolute configuration of the 12a-hydroxyrotenoids. Compounds 2-7 were screened for their radioligand binding affinities toward the opioid (δ, κ, and µ) and cannabinoid (CB1 and CB2) receptor subtypes. The 6-methoxy-substituted rotenoids 3, 4, and 7 showed the highest receptor binding affinity with moderate selectivity toward the δ-opioid receptor subtype, with negligible binding affinities for CB1 and CB2. Their binding affinities toward the δ-opioid receptor were 64.5% (4), 58.7% (7), and 55.3% (3) at 10 µM, respectively.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Alucinógenos/farmacología , Mirabilis/química , Animales , Células CHO , Antagonistas de Receptores de Cannabinoides/aislamiento & purificación , Cricetulus , Alucinógenos/aislamiento & purificación , Humanos , Estructura Molecular , New Mexico , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Raíces de Plantas/química , Receptores de Cannabinoides , Receptores Opioides delta/antagonistas & inhibidores
10.
J Nat Prod ; 84(3): 738-749, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33606538

RESUMEN

Nine new glucosyloxybenzyl 2-hydroxy-2-isobutylsuccinates, pleionosides M-U (1-9), and 12 known compounds (10-21) were isolated from the pseudobulbs of Pleione yunnanensis. Their structures and absolute configurations were established through a combination of HRESIMS and NMR data and supported by physical and chemical methods. Compounds 5, 6, 10, and 15 showed significant in vitro hepatoprotective activity against d-galactosamine (d-GalN)-induced toxicity in HL-7702 cells with increasing cell viability by 27%, 22%, 19%, and 31% compared to the model group (cf. bicyclol, 14%) at 10 µM, respectively. Compounds 4, 9, and 11 exhibited moderate hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced toxicity in HepG2 cells with increasing cell viability by 9%, 16%, and 12% compared to the model group (cf. bicyclol, 9%) at 10 µM, respectively.


Asunto(s)
Orchidaceae/química , Sustancias Protectoras/farmacología , Succinatos/farmacología , Acetaminofén , Supervivencia Celular/efectos de los fármacos , China , Células Hep G2 , Humanos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Sustancias Protectoras/aislamiento & purificación , Succinatos/aislamiento & purificación
11.
J Nat Prod ; 83(3): 706-713, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32105471

RESUMEN

Guided by LC-MS/MS molecular networking-based metabolomics and cytotoxic activity, two new discorhabdin-type alkaloids, tridiscorhabdin (1) and didiscorhabdin (2), were isolated from the sponge Latrunculia biformis, collected from the Weddell Sea (Antarctica) at -291 m depth. Their structures were established by HRESIMS, NMR, [α]D, and ECD data coupled with DFT calculations. Both compounds bear a novel C-N bridge (C-1/N-13) between discorhabdin monomers, and 1 represents the first trimeric discorhabdin molecule isolated from Nature. Tridiscorhabdin (1) exhibited strong cytotoxic activity against the human colon cancer cell line HCT-116 (IC50 value 0.31 µM).


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Poríferos/química , Alcaloides/aislamiento & purificación , Animales , Regiones Antárticas , Antineoplásicos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Línea Celular Tumoral , Humanos , Estructura Molecular
12.
J Nat Prod ; 83(6): 1891-1898, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32484349

RESUMEN

Ouratea spectabilis is an arborous species traditionally used in Brazil as an anti-inflammatory agent. Four new (3,3″)-linked biflavanone O-methyl ethers, named ouratein A (1), B (2), C (3), and D (4), were isolated from the bark extract of the species. Ouratein A (1) is an enantiomer of neochamagesmine A, which has never been described before. The structures were elucidated by extensive spectroscopic data analyses, whereas their absolute configurations were defined by electronic circular dichroism data. Ouratein D (4) inhibited in vitro the release of the pro-inflammatory cytokine CCL2 by lipopolysaccharide-stimulated THP-1 cells (IC50 of 3.1 ± 1.1 µM), whereas TNF and IL-1ß release were not reduced by any of the biflavanones. These findings show ouratein D (4) as a selective CCL2 inhibitor, which may have potential for the development of new anti-inflammatory agents to prevent or treat cardiovascular diseases.


Asunto(s)
Antiinflamatorios/farmacología , Citocinas/metabolismo , Flavonas/farmacología , Ochnaceae/química , Línea Celular Tumoral , Quimiocina CCL2/antagonistas & inhibidores , Dicroismo Circular , Flavonas/química , Flavonas/aislamiento & purificación , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Estructura Molecular , Corteza de la Planta/química , Extractos Vegetales/química , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
13.
J Nat Prod ; 83(8): 2483-2489, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32786879

RESUMEN

Phytochemical investigation of extracts of the stems of Hypoestes aristata led to the isolation of nine lignans that included four known compounds, namely, hinokinin (1), savinin (2), medioresinol (3), and two cubebins (8a,b), three new butyrolactone lignans (4-6), and butyrolactol lignans 7a-c. The structures of the new compounds were established using 1D and 2D NMR and HRESIMS data. The absolute configurations of the new lignans were determined from their ECD data and the Mosher's ester method. This is the first unequivocal assignment of the absolute configuration at C-7 and C-7' of 7- and 7'-hydroxybutyrolactone lignans. The compounds were screened for inhibition of an HIV-1 protease enzyme, and compounds 1 and 6 exhibited moderate activity in this regard.


Asunto(s)
Acanthaceae/química , Lignanos/farmacología , Cromatografía Liquida/métodos , Lignanos/aislamiento & purificación , Componentes Aéreos de las Plantas/química , Extracción en Fase Sólida , Análisis Espectral/métodos
14.
Molecules ; 25(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079271

RESUMEN

Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.


Asunto(s)
Oligosacáridos/farmacología , Extractos Vegetales/farmacología , Vaccinium macrocarpon/química , Adhesión Bacteriana/efectos de los fármacos , Alimentos Funcionales , Humanos , Microbiota/efectos de los fármacos , Oligosacáridos/química , Extractos Vegetales/química , Espectroscopía de Protones por Resonancia Magnética
15.
Molecules ; 26(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374444

RESUMEN

The metabolic pathways in the apicoplast organelle of Plasmodium parasites are similar to those in plastids in plant cells and are suitable targets for malaria drug discovery. Some phytotoxins released by plant pathogenic fungi have been known to target metabolic pathways of the plastid; thus, they may also serve as potential antimalarial drug leads. An EtOAc extract of the broth of the endophyte Botryosphaeria dothidea isolated from a seed collected from a Torreya taxifolia plant with disease symptoms, showed in vitro antimalarial and phytotoxic activities. Bioactivity-guided fractionation of the extract afforded a mixture of two known isomeric phytotoxins, FRT-A and flavipucine (or their enantiomers, sapinopyridione and (-)-flavipucine), and two new unstable γ-lactam alkaloids dothilactaenes A and B. The isomeric mixture of phytotoxins displayed strong phytotoxicity against both a dicot and a monocot and moderate cytotoxicity against a panel of cell lines. Dothilactaene A showed no activity. Dothilactaene B was isolated from the active fraction, which showed moderate in vitro antiplasmodial activity with high selectivity index. In spite of this activity, its instability and various other biological activities shown by related compounds would preclude it from being a viable antimalarial lead.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Ascomicetos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Toxinas Biológicas/química , Toxinas Biológicas/farmacología , Antimaláricos/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Plasmodium/efectos de los fármacos , Semillas/química , Análisis Espectral , Taxaceae/microbiología , Toxinas Biológicas/aislamiento & purificación
16.
J Am Chem Soc ; 141(10): 4338-4344, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30758203

RESUMEN

We report here the orchestration of molecular ion networking and a set of computationally assisted structural elucidation approaches in the discovery of a new class of pyrroloiminoquinone alkaloids that possess selective bioactivity against pancreatic cancer cell lines. Aleutianamine represents the first in a new class of pyrroloiminoquinone alkaloids possessing a highly strained multibridged ring system, discovered from Latrunculia ( Latrunculia) austini Samaai, Kelly & Gibbons, 2006 (class Demospongiae, order Poecilosclerida, family Latrunculiidae) recovered during a NOAA deep-water exploration of the Aleutian Islands. The molecule was identified with the guidance of mass spectrometry, nuclear magnetic resonance, and molecular ion networking (MoIN) analysis. The structure of aleutianamine was determined using extensive spectroscopic analysis in conjunction with computationally assisted quantifiable structure elucidation tools. Aleutianamine exhibited potent and selective cytotoxicity toward solid tumor cell lines including pancreatic cancer (PANC-1) with an IC50 of 25 nM and colon cancer (HCT-116) with an IC50 of 1 µM, and represents a potent and selective candidate for advanced preclinical studies.


Asunto(s)
Antineoplásicos/farmacología , Alcaloides Indólicos/farmacología , Alaska , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Ratones , Modelos Químicos , Estructura Molecular , Poríferos/química , Estereoisomerismo
17.
J Nat Prod ; 82(3): 589-605, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30873836

RESUMEN

Cranberry ( Vaccinium macrocarpon) juice is traditionally used for the prevention of urinary tract infections. Human urine produced after cranberry juice consumption can prevent Escherichia coli adhesion, but the antiadhesive urinary metabolites responsible have not been conclusively identified. Adult female sows were therefore fed spray-dried cranberry powder (5 g/kg/day), and urine was collected via catheter. Urine fractions were tested for antiadhesion activity using a human red blood cell (A+) anti-hemagglutination assay with uropathogenic P-fimbriated E. coli. Components were isolated from fractions of interest using Sephadex LH-20 gel filtration chromatography followed by HPLC on normal and reversed-phase sorbents with evaporative light scattering detection. Active urine fractions were found to contain a complex series of oligosaccharides but not proanthocyanidins, and a single representative arabinoxyloglucan octasaccharide was isolated in sufficient quantity and purity for full structural characterization by chemical derivatization and NMR spectroscopic methods. Analogous cranberry material contained a similar complex series of arabinoxyloglucan oligosaccharides that exhibited antiadhesion properties in preliminary testing. These results indicate that oligosaccharides structurally related to those found in cranberry may contribute to the antiadhesion properties of urine after cranberry consumption.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Glucanos/farmacología , Oligosacáridos/farmacología , Orina , Escherichia coli Uropatógena/efectos de los fármacos , Vaccinium macrocarpon , Xilanos/farmacología , Animales , Glucanos/química , Oligosacáridos/química , Porcinos , Escherichia coli Uropatógena/fisiología , Xilanos/química
18.
J Nat Prod ; 82(10): 2842-2851, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31556297

RESUMEN

Three new tetrahydrobenzocyclooctabenzofuranone lignan glucosides, longipedunculatins A-C (1-3), a new dibenzocyclooctadiene lignan glucoside, longipedunculatin D (4), a new dibenzocyclooctadiene lignan (5), five new tetrahydrobenzocyclooctabenzofuranone lignans (6-10), and two new simple lignans (11, 12) were isolated from the roots of Kadsura longipedunculata. Their structures and absolute configurations were established using a combination of MS, NMR, and experimental and calculated electronic circular dichroism data. Compound 7 showed moderate hepatoprotective activity against N-acetyl-p-aminophenol-induced toxicity in HepG2 cells with a cell survival rate at 10 µM of 50.8%. Compounds 2, 7, and 12 showed significant in vitro inhibitory effects with an inhibition rate of 55.1%, 74.9%, and 89.8% on nitric oxide production assays at 10 µM.


Asunto(s)
Kadsura/química , Lignanos/aislamiento & purificación , Hígado/efectos de los fármacos , Dicroismo Circular , Ciclooctanos/química , Ciclooctanos/aislamiento & purificación , Ciclooctanos/farmacología , Células Hep G2 , Humanos , Lignanos/química , Lignanos/farmacología , Espectroscopía de Resonancia Magnética , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Raíces de Plantas/química , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación , Sustancias Protectoras/farmacología
19.
J Nat Prod ; 82(3): 606-620, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30839212

RESUMEN

Cranberry ( Vaccinium macrocarpon) products are widely available in North American food, juice, and dietary supplement markets. The use of cranberry is popular for the prevention of urinary tract infections (UTIs) and other reported health benefits. Preliminary findings by our research group indicate that arabinoxyloglucan oligosaccharides are present in cranberry products and may contribute to the antiadhesion properties of urine produced after cranberry consumption, but relatively little is known regarding the oligosaccharide components of cranberry. This report describes the isolation from two cranberry sources and the complete structure elucidation of two arabinoxyloglucan oligosaccharides through the use of carbohydrate-specific NMR spectroscopic and chemical derivatization methods. These compounds were identified as the heptasaccharide ß-d-glucopyranosyl-(1→4)-[α-d-xylopyranosyl-(1→6)]-ß-d-glucopyranosyl-(1→4)-ß-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-ß-d-glucopyranose (1) and the octasaccharide ß-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-ß-d-glucopyranosyl-(1→4)-ß-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-ß-d-glucopyranose (2). Selected fractions and the isolated compounds were subjected to antimicrobial, cell viability, and E. coli antiadhesion assays. Results indicated that enriched fractions and purified compounds lacked antimicrobial and cytotoxic effects, supporting the potential use of such compounds for disease prevention without the risk for resistance development. Preliminary antiadhesion results indicated that mixtures of oligosaccharides exhibited greater antiadhesion properties than purified fractions or pure compounds. The potential use of cranberry oligosaccharides for the prevention of UTIs warrants continued investigations of this complex compound series.


Asunto(s)
Oligosacáridos/química , Vaccinium macrocarpon/química , Conformación de Carbohidratos , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos
20.
Molecules ; 24(4)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795572

RESUMEN

Bioassay-guided fractionation of an EtOAc extract of the broth of the endophytic fungus Nemania sp. UM10M (Xylariaceae) isolated from a diseased Torreya taxifolia leaf afforded three known cytochalasins, 19,20-epoxycytochalasins C (1) and D (2), and 18-deoxy-19,20-epoxy-cytochalasin C (3). All three compounds showed potent in vitro antiplasmodial activity and phytotoxicity with no cytotoxicity to Vero cells. These compounds exhibited moderate to weak cytotoxicity to some of the cell lines of a panel of solid tumor (SK-MEL, KB, BT-549, and SK-OV-3) and kidney epithelial cells (LLC-PK11). Evaluation of in vivo antimalarial activity of 19,20-epoxycytochalasin C (1) in a mouse model at 100 mg/kg dose showed that this compound had weak suppressive antiplasmodial activity and was toxic to animals.


Asunto(s)
Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Citocalasinas/farmacología , Malaria/tratamiento farmacológico , Taxaceae/microbiología , Xylariales/química , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Citocalasinas/química , Citocalasinas/aislamiento & purificación , Endófitos/química , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Humanos , Malaria/mortalidad , Malaria/parasitología , Masculino , Ratones , Hojas de la Planta/microbiología , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/crecimiento & desarrollo , Análisis de Supervivencia , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA