Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35438138

RESUMEN

Since its launch in 2008, the European Genome-Phenome Archive (EGA) has been leading the archiving and distribution of human identifiable genomic data. In this regard, one of the community concerns is the potential usability of the stored data, as of now, data submitters are not mandated to perform any quality control (QC) before uploading their data and associated metadata information. Here, we present a new File QC Portal developed at EGA, along with QC reports performed and created for 1 694 442 files [Fastq, sequence alignment map (SAM)/binary alignment map (BAM)/CRAM and variant call format (VCF)] submitted at EGA. QC reports allow anonymous EGA users to view summary-level information regarding the files within a specific dataset, such as quality of reads, alignment quality, number and type of variants and other features. Researchers benefit from being able to assess the quality of data prior to the data access decision and thereby, increasing the reusability of data (https://ega-archive.org/blog/data-upcycling-powered-by-ega/).


Asunto(s)
Genoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metadatos , Control de Calidad , Programas Informáticos
2.
Environ Sci Technol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046290

RESUMEN

The ocean's mercury (Hg) content has tripled due to anthropogenic activities, and although the dark ocean (>200 m) has become an important Hg reservoir, concentrations of the toxic and bioaccumulative methylmercury (MeHg) are low and therefore very difficult to measure. As a consequence, the current understanding of the Hg cycle in the deep ocean is severely data-limited, and the factors controlling MeHg, as well as its transformation rates, remain largely unknown. By analyzing 52 globally distributed bathypelagic deep-ocean metagenomes and 26 new metatranscriptomes from the Malaspina Expedition, our study reveals the widespread distribution and expression of bacterial-coding genes merA and merB in the global bathypelagic ocean (∼4000 m depth). These genes, associated with HgII reduction and MeHg demethylation, respectively, are particularly prevalent within the particle-attached fraction. Moreover, our results indicate that water mass age and the organic matter composition shaped the structure of the communities harboring merA and merB genes living in different particle size fractions, their abundance, and their expression levels. Members of the orders Corynebacteriales, Rhodobacterales, Alteromonadales, Oceanospirillales, Moraxellales, and Flavobacteriales were the main taxonomic players containing merA and merB genes in the deep ocean. These findings, together with our previous results of pure culture isolates of the deep bathypelagic ocean possessing the metabolic capacity to degrade MeHg, indicated that both methylmercury demethylation and HgII reduction likely occur in the global dark ocean, the largest biome in the biosphere.

3.
J Hazard Mater ; 465: 133120, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101011

RESUMEN

Marine sediments impacted by urban and industrial pollutants are typically exposed to reducing conditions and represent major reservoirs of toxic mercury species. Mercury methylation mediated by anaerobic microorganisms is favored under such conditions, yet little is known about potential microbial mechanisms for mercury detoxification. We used culture-independent (metagenomics, metabarcoding) and culture-dependent approaches in anoxic marine sediments to identify microbial indicators of mercury pollution and analyze the distribution of genes involved in mercury reduction (merA) and demethylation (merB). While none of the isolates featured merB genes, 52 isolates, predominantly affiliated with Gammaproteobacteria, were merA positive. In contrast, merA genes detected in metagenomes were assigned to different phyla, including Desulfobacterota, Actinomycetota, Gemmatimonadota, Nitrospirota, and Pseudomonadota. This indicates a widespread capacity for mercury reduction in anoxic sediment microbiomes. Notably, merA genes were predominately identified in Desulfobacterota, a phylum previously associated only with mercury methylation. Marker genes involved in the latter process (hgcAB) were also mainly assigned to Desulfobacterota, implying a potential central and multifaceted role of this phylum in the mercury cycle. Network analysis revealed that Desulfobacterota were associated with anaerobic fermenters, methanogens and sulfur-oxidizers, indicating potential interactions between key players of the carbon, sulfur and mercury cycling in anoxic marine sediments.


Asunto(s)
Mercurio , Microbiota , Mercurio/análisis , Sedimentos Geológicos/microbiología , Bacterias/genética , Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA