Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(10): 4353-4362, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37479784

RESUMEN

The DPYSL2/CRMP2 gene encodes a microtubule-stabilizing protein crucial for neurogenesis and is associated with numerous psychiatric and neurodegenerative disorders including schizophrenia, bipolar disorder, and Alzheimer's disease. DPYSL2 generates multiple RNA and protein isoforms, but few studies have differentiated between them. We previously reported an association of a functional variant in the DPYSL2-B isoform with schizophrenia (SCZ) and demonstrated in HEK293 cells that this variant reduced the length of cellular projections and created transcriptomic changes that captured schizophrenia etiology by disrupting mTOR signaling-mediated regulation. In the present study, we follow up on these results by creating, to our knowledge, the first models of endogenous DPYSL2-B knockout in human induced pluripotent stem cells (iPSCs) and neurons. CRISPR/Cas9-faciliated knockout of DPYSL2-B in iPSCs followed by Ngn2-induced differentiation to glutamatergic neurons showed a reduction in DPYSL2-B/CRMP2-B RNA and protein with no observable impact on DPYSL2-A/CRMP2-A. The average length of dendrites in knockout neurons was reduced up to 58% compared to controls. Transcriptome analysis revealed disruptions in pathways highly relevant to psychiatric disease including mTOR signaling, cytoskeletal dynamics, immune function, calcium signaling, and cholesterol biosynthesis. We also observed a significant enrichment of the differentially expressed genes in SCZ-associated loci from genome-wide association studies (GWAS). Our findings expand our previous results to neuronal cells, clarify the functions of the human DPYSL2-B isoform and confirm its involvement in molecular pathologies shared between many psychiatric diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Trastornos del Neurodesarrollo , Humanos , Estudio de Asociación del Genoma Completo , Células HEK293 , Neuronas , Serina-Treonina Quinasas TOR , Isoformas de Proteínas , ARN
2.
Curr Psychiatry Rep ; 22(5): 24, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32318888

RESUMEN

PURPOSE OF REVIEW: We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS: The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.


Asunto(s)
Trastorno Bipolar , Células Madre Pluripotentes Inducidas , Esquizofrenia , Trastorno Bipolar/genética , Humanos , Neuronas , Fenotipo
3.
J Clin Invest ; 134(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39403926

RESUMEN

Substance use disorders (SUDs) are highly prevalent and associated with excess morbidity, mortality, and economic costs. Thus, there is considerable interest in the early identification of individuals who may be more susceptible to developing SUDs and in improving personalized treatment decisions for those who have SUDs. SUDs are known to be influenced by both genetic and environmental factors. Polygenic scores (PGSs) provide a single measure of genetic liability that could be used as a biomarker in predicting disease development, progression, and treatment response. Although PGSs are rapidly being integrated into clinical practice, there is little information to guide clinicians in their responsible use and interpretation. In this Review, we discuss the potential benefits and pitfalls of the use of PGSs in the clinical care of SUDs, highlighting current research. We also provide suggestions for important considerations prior to implementing the clinical use of PGSs and recommend future directions for research.


Asunto(s)
Herencia Multifactorial , Trastornos Relacionados con Sustancias , Humanos , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/terapia , Predisposición Genética a la Enfermedad
4.
medRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39132487

RESUMEN

Somatoform traits, which manifest as persistent physical symptoms without a clear medical cause, are prevalent and pose challenges to clinical practice. Understanding the genetic basis of these disorders could improve diagnostic and therapeutic approaches. With publicly available summary statistics, we conducted a multivariate genome-wide association study (GWAS) and multi-omic analysis of four somatoform traits-fatigue, irritable bowel syndrome, pain intensity, and health satisfaction-in 799,429 individuals genetically similar to Europeans. Using genomic structural equation modeling, GWAS identified 134 loci significantly associated with a somatoform common factor, including 44 loci not significant in the input GWAS and 8 novel loci for somatoform traits. Gene-property analyses highlighted an enrichment of genes involved in synaptic transmission and enriched gene expression in 12 brain tissues. Six genes, including members of the CD300 family, had putatively causal effects mediated by protein abundance. There was substantial polygenic overlap (76-83%) between the somatoform and externalizing, internalizing, and general psychopathology factors. Somatoform polygenic scores were associated most strongly with obesity, Type 2 diabetes, tobacco use disorder, and mood/anxiety disorders in independent biobanks. Drug repurposing analyses suggested potential therapeutic targets, including MEK inhibitors. Mendelian randomization indicated potentially protective effects of gut microbiota, including Ruminococcus bromii. These biological insights provide promising avenues for treatment development.

5.
medRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766259

RESUMEN

The etiology of substance use disorders (SUDs) and psychiatric disorders reflects a combination of both transdiagnostic (i.e., common) and disorder-level (i.e., independent) genetic risk factors. We applied genomic structural equation modeling to examine these genetic factors across SUDs, psychotic, mood, and anxiety disorders using genome-wide association studies (GWAS) of European- (EUR) and African-ancestry (AFR) individuals. In EUR individuals, transdiagnostic genetic factors represented SUDs (143 lead single nucleotide polymorphisms [SNPs]), psychotic (162 lead SNPs), and mood/anxiety disorders (112 lead SNPs). We identified two novel SNPs for mood/anxiety disorders that have probable regulatory roles on FOXP1, NECTIN3, and BTLA genes. In AFR individuals, genetic factors represented SUDs (1 lead SNP) and psychiatric disorders (no significant SNPs). The SUD factor lead SNP, although previously significant in EUR- and cross-ancestry GWAS, is a novel finding in AFR individuals. Shared genetic variance accounted for overlap between SUDs and their psychiatric comorbidities, with second-order GWAS identifying up to 12 SNPs not significantly associated with either first-order factor in EUR individuals. Finally, common and independent genetic effects showed different associations with psychiatric, sociodemographic, and medical phenotypes. For example, the independent components of schizophrenia and bipolar disorder had distinct associations with affective and risk-taking behaviors, and phenome-wide association studies identified medical conditions associated with tobacco use disorder independent of the broader SUDs factor. Thus, combining transdiagnostic and disorder-level genetic approaches can improve our understanding of co-occurring conditions and increase the specificity of genetic discovery, which is critical for psychiatric disorders that demonstrate considerable symptom and etiological overlap.

6.
Sci Rep ; 12(1): 11928, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831384

RESUMEN

Scarless genome editing of induced pluripotent stem cells (iPSCs) is crucial for the precise modeling of genetic disease. Here we present CRISPR Del/Rei, a two-step deletion-reinsertion strategy with high editing efficiency and simple PCR-based screening that generates isogenic clones in ~ 2 months. We apply our strategy to edit iPSCs at 3 loci with only rare off target editing.


Asunto(s)
Edición Génica , Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Humano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA