RESUMEN
BACKGROUND: Processes extending the shelf life of climacteric fruit play an important role in terms of a sustainable global food supply. In a previous study, a synthetic octapeptide (NOP-1) was shown to inhibit the interaction between ethylene receptor (ETR) and ethylene insensitive-2 (EIN2), and in consequence delay tomato ripening. We investigated for the first time the effect of NOP-1 on inhibiting the ripening of apples ('Golden Delicious') during postharvest. RESULTS: Using purified recombinant proteins from a bacterial expression system, we demonstrate here that EIN2 also interacts tightly (Kd = 136 ± 29 nmol L-1 ) with the corresponding apple ETR MdETR1. In line with previous binding studies on tomato ETRs, the ripening-delaying peptide NOP-1 clearly binds to the purified apple ETR. An NOP-1 solution (1000 µmol L-1 ) was applied with a brush or microdispenser and compared with apples treated with 1-methylcyclopropene (1-MCP) (SmartFresh™, Agrofresh) applied as gaseous treatment or untreated control fruits. NOP-1 inhibited colour development and chlorophyll degradation during shelf life. These effects were more pronounced with the brush application (surface film) than with microdroplets application (mimicking a sprayable formulation). NOP-1 did not alter ethylene release or respiration rate, whereas 1-MCP expectedly strongly suppressed both. There were no differences in quality parameters evaluated. CONCLUSION: Our study shows that NOP-1 binds to MdETR1 which results in delaying of ethylene-dependent ripening developments of skin colour and chlorophyll. Besides application methods, possible reasons for the weak effect of NOP-1 in comparison with previous tomato experiments could be different receptor affinity and penetration differences. © 2019 Society of Chemical Industry.
Asunto(s)
Frutas/química , Frutas/crecimiento & desarrollo , Malus/efectos de los fármacos , Péptidos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Ciclopropanos/farmacología , Etilenos/metabolismo , Frutas/efectos de los fármacos , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malus/genética , Malus/crecimiento & desarrollo , Malus/metabolismo , Péptidos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismoRESUMEN
BACKGROUND: We examined the suitability of chlorophyll fluorescence-based indices to monitor and predict concentrations of fruit maturity compounds during tomato ripening under different growing conditions in the greenhouse. The aim of this study was to evaluate the effects of chlorophyll concentration changes on fluorescence-based indices and to exploit the relation between fluorescence and reflectance indices with the corresponding maturity compounds determined analytically. RESULTS: Fruits grown under water deficit matured faster than control fruits as recorded with fluorescence-based indices. The SFR_R index correlated well with the analytical determination of chlorophyll content, whereas the single-signal FRF_G correlated with lycopene content even if the sensor was unable to differentiate precisely between maturity stages 2 to 4. Neither the FLAV index nor the FLAV_UV index was suitable for flavonoid prediction in tomato fruits. Compared with fluorescence indices, the relation between the reflection index and pigment concentrations was lower for chlorophyll and higher for lycopene. CONCLUSION: Chlorophyll and lycopene content in tomato fruits can be estimated by means of fluorescence indices during the pre-harvest phase. Since the chlorophyll decrease during tomato ripening is the driving force affecting all fluorescence signals, the methods are not reliable for estimation of other maturity compounds in tomato fruits. © 2018 Society of Chemical Industry.
Asunto(s)
Frutas/química , Extractos Vegetales/química , Solanum lycopersicum/crecimiento & desarrollo , Espectrofotometría Ultravioleta/métodos , Carotenoides/química , Clorofila/química , Color , Fluorescencia , Frutas/crecimiento & desarrollo , Licopeno , Solanum lycopersicum/químicaRESUMEN
Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission.