Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Environ Sci Technol ; 58(16): 7056-7065, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608141

RESUMEN

The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.


Asunto(s)
Óxido Nitroso , Óxido Nitroso/metabolismo , Bacterias/metabolismo , Oxidorreductasas/metabolismo , Desnitrificación
2.
Environ Sci Technol ; 56(5): 3225-3233, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142487

RESUMEN

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.


Asunto(s)
Carbón Mineral , Metano , Carbono , Gas Natural
3.
Environ Sci Technol ; 53(15): 8649-8663, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31260289

RESUMEN

Methylmercury (MeHg) is a bioaccumulative toxic contaminant in many ecosystems, but factors governing its production are poorly understood. Recent work has shown that the anaerobic microbial conversion of mercury (Hg) to MeHg requires the Hg-methylation genes hgcAB and that these genes can be used as biomarkers in PCR-based estimators of Hg-methylator abundance. In an effort to determine reliable methods for assessing hgcA abundance and diversity and linking them to MeHg concentrations, multiple approaches were compared including metagenomic shotgun sequencing, 16S rRNA gene pyrosequencing and cloning/sequencing hgcAB gene products. Hg-methylator abundance was also determined by quantitative hgcA qPCR amplification and metaproteomics for comparison to the above measurements. Samples from eight sites were examined covering a range of total Hg (HgT; 0.03-14 mg kg-1 dry wt. soil) and MeHg (0.05-27 µg kg-1 dry wt. soil) concentrations. In the metagenome and amplicon sequencing of hgcAB diversity, the Deltaproteobacteria were the dominant Hg-methylators while Firmicutes and methanogenic Archaea were typically ∼50% less abundant. This was consistent with metaproteomics estimates where the Deltaproteobacteria were steadily higher. The 16S rRNA gene pyrosequencing did not have sufficient resolution to identify hgcAB+ species. Metagenomic and hgcAB results were similar for Hg-methylator diversity and clade-specific qPCR-based approaches for hgcA are only appropriate when comparing the abundance of a particular clade across various samples. Weak correlations between Hg-methylating bacteria and soil Hg concentrations were observed for similar environmental samples, but overall total Hg and MeHg concentrations poorly correlated with Hg-cycling genes.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Ecosistema , Monitoreo del Ambiente , ARN Ribosómico 16S , Reproducibilidad de los Resultados
4.
Biofouling ; 35(6): 669-683, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31402749

RESUMEN

Desulfovibrio alaskensis G20 biofilms were cultivated on 316 steel, 1018 steel, or borosilicate glass under steady-state conditions in electron-acceptor limiting (EAL) and electron-donor limiting (EDL) conditions with lactate and sulfate in a defined medium. Increased corrosion was observed on 1018 steel under EDL conditions compared to 316 steel, and biofilms on 1018 carbon steel under the EDL condition had at least twofold higher corrosion rates compared to the EAL condition. Protecting the 1018 metal coupon from biofilm colonization significantly reduced corrosion, suggesting that the corrosion mechanism was enhanced through attachment between the material and the biofilm. Metabolomic mass spectrometry analyses demonstrated an increase in a flavin-like molecule under the 1018 EDL condition and sulfonates under the 1018 EAL condition. These data indicate the importance of S-cycling under the EAL condition, and that the EDL is associated with increased biocorrosion via indirect extracellular electron transfer mediated by endogenously produced flavin-like molecules.


Asunto(s)
Biopelículas , Desulfovibrio/fisiología , Acero/química , Incrustaciones Biológicas , Transporte Biológico , Corrosión , Electrones , Oxidación-Reducción , Sulfatos/metabolismo
5.
Biochem Soc Trans ; 46(2): 269-284, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29472366

RESUMEN

Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning.


Asunto(s)
Redes y Vías Metabólicas , Consorcios Microbianos/fisiología , Adaptación Fisiológica , Biopelículas , Biomasa , Reactores Biológicos , Simulación por Computador , Modelos Biológicos
6.
Appl Microbiol Biotechnol ; 102(6): 2839-2850, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29429007

RESUMEN

Desulfovibrio spp. are capable of heavy metal reduction and are well-studied systems for understanding metal fate and transport in anaerobic environments. Desulfovibrio vulgaris Hildenborough was grown under environmentally relevant conditions (i.e., temperature, nutrient limitation) to elucidate the impacts on Cr(VI) reduction on cellular physiology. Growth at 20 °C was slower than 30 °C and the presence of 50 µM Cr(VI) caused extended lag times for all conditions, but once growth resumed the growth rate was similar to that without Cr(VI). Cr(VI) reduction rates were greatly diminished at 20 °C for both 50 and 100 µM Cr(VI), particularly for the electron acceptor limited (EAL) condition in which Cr(VI) reduction was much slower, the growth lag much longer (200 h), and viability decreased compared to balanced (BAL) and electron donor limited (EDL) conditions. When sulfate levels were increased in the presence of Cr(VI), cellular responses improved via a shorter lag time to growth. Similar results were observed between the different resource (donor/acceptor) ratio conditions when the sulfate levels were normalized (10 mM), and these results indicated that resource ratio (donor/acceptor) impacted D. vulgaris response to Cr(VI) and not merely sulfate limitation. The results suggest that temperature and resource ratios greatly impacted the extent of Cr(VI) toxicity, Cr(VI) reduction, and the subsequent cellular health via Cr(VI) influx and overall metabolic rate. The results also emphasized the need to perform experiments at lower temperatures with nutrient limitation to make accurate predictions of heavy metal reduction rates as well as physiological states in the environment.


Asunto(s)
Carcinógenos Ambientales/metabolismo , Carcinógenos Ambientales/toxicidad , Cromo/metabolismo , Cromo/toxicidad , Desulfovibrio vulgaris/efectos de los fármacos , Desulfovibrio vulgaris/metabolismo , Anaerobiosis , Desulfovibrio vulgaris/crecimiento & desarrollo , Viabilidad Microbiana/efectos de los fármacos , Oxidación-Reducción , Sulfatos/metabolismo , Temperatura
7.
Antonie Van Leeuwenhoek ; 111(12): 2425-2440, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30069722

RESUMEN

The Carpathian Basin is a lowland plain located mainly in Hungary. Due to the nature of the bedrock, alluvial deposits, and a bowl shape, many lakes and ponds of the area are characterized by high alkalinity. In this study, we characterized temporal changes in eukaryal and bacterial community dynamics with high throughput sequencing and relate the changes to environmental conditions in Lake Velence located in Fejér county, Hungary. The sampled Lake Velence microbial populations (algal and bacterial) were analyzed to identify potential correlations with other community members and environmental parameters at six timepoints over 6 weeks in the Spring of 2012. Correlations between community members suggest a positive relationship between certain algal and bacterial populations (e.g. Chlamydomondaceae with Actinobacteria and Acidobacteria), while other correlations allude to changes in these relationships over time. During the study, high nitrogen availability may have favored non-nitrogen fixing cyanobacteria, such as the toxin-producing Microcystis aeruginosa, and the eutrophic effect may have been exacerbated by high phosphorus availability as well as the high calcium and magnesium content of the Carpathian Basin bedrock, potentially fostering exopolymer production and cell aggregation. Cyanobacterial bloom formation could have a negative environmental impact on other community members and potentially affect overall water quality as well as recreational activities. To our knowledge, this is the first prediction for relationships between photoautotrophic eukaryotes and bacteria from an alkaline, Hungarian lake.


Asunto(s)
Cianobacterias/genética , Eutrofización , Lagos/microbiología , Consorcios Microbianos/genética , Phaeophyceae/genética , Filogenia , Acidobacteria/clasificación , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Acidobacteria/metabolismo , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Álcalis/química , Calcio/química , Calcio/metabolismo , Chlorophyceae/clasificación , Chlorophyceae/genética , Chlorophyceae/metabolismo , Cianobacterias/clasificación , Cianobacterias/aislamiento & purificación , Cianobacterias/metabolismo , ADN de Algas/genética , ADN Bacteriano/genética , Hungría , Concentración de Iones de Hidrógeno , Magnesio/química , Magnesio/metabolismo , Microcystis/clasificación , Microcystis/genética , Microcystis/aislamiento & purificación , Microcystis/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , Phaeophyceae/clasificación , Phaeophyceae/aislamiento & purificación , Phaeophyceae/metabolismo , Fósforo/química , Fósforo/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Microbiología del Agua
8.
Anal Chem ; 88(19): 9753-9758, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27560777

RESUMEN

Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process. Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.


Asunto(s)
Internet , Metabolómica , Aplicaciones Móviles , Teléfono Inteligente , Cromatografía Liquida , Interpretación Estadística de Datos , Humanos , Espectrometría de Masas , Análisis de Componente Principal
9.
Anal Chem ; 87(2): 884-91, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25496351

RESUMEN

An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications. Validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.


Asunto(s)
Biología Computacional , Desulfovibrio vulgaris/metabolismo , Procesamiento Automatizado de Datos/métodos , Metabolómica/métodos , Cromatografía Liquida/métodos , Bases de Datos Factuales , Desulfovibrio vulgaris/crecimiento & desarrollo , Programas Informáticos , Espectrometría de Masas en Tándem/métodos
11.
Environ Sci Technol ; 49(21): 12922-31, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25835088

RESUMEN

Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. In this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading, complex substrate. To test these hypotheses, groundwater microbial communities were monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO3-, Cr(VI), Fe(II) and SO4(2-). Our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction.


Asunto(s)
Cromo/metabolismo , Agua Subterránea/microbiología , Ácido Láctico/química , Consorcios Microbianos/fisiología , Polímeros/química , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Biomasa , Agua Subterránea/química , Hidrógeno/metabolismo , Consorcios Microbianos/genética , Nitratos/metabolismo , Oxidación-Reducción , Poliésteres , Sulfatos/metabolismo
12.
Appl Microbiol Biotechnol ; 98(11): 4805-16, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24695829

RESUMEN

Regardless of current market conditions and availability of conventional petroleum sources, alternatives are needed to circumvent future economic and environmental impacts from continued exploration and harvesting of conventional hydrocarbons. Diatoms and green algae (microalgae) are eukaryotic photoautotrophs that can utilize inorganic carbon (e.g., CO2) as a carbon source and sunlight as an energy source, and many microalgae can store carbon and energy in the form of neutral lipids. In addition to accumulating useful precursors for biofuels and chemical feed stocks, the use of autotrophic microorganisms can further contribute to reduced CO2 emissions through utilization of atmospheric CO2. Because of the inherent connection between carbon, nitrogen, and phosphorus in biological systems, macronutrient deprivation has been proven to significantly enhance lipid accumulation in different diatom and algae species. However, much work is needed to understand the link between carbon, nitrogen, and phosphorus in controlling resource allocation at different levels of biological resolution (cellular versus ecological). An improved understanding of the relationship between the effects of N, P, and micronutrient availability on carbon resource allocation (cell growth versus lipid storage) in microalgae is needed in conjunction with life cycle analysis. This mini-review will briefly discuss the current literature on the use of nutrient deprivation and other conditions to control and optimize microalgal growth in the context of cell and lipid accumulation for scale-up processes.


Asunto(s)
Biocombustibles , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Metabolismo de los Lípidos , Carbono/metabolismo , Metabolismo Energético , Luz , Fotosíntesis
13.
Trends Biotechnol ; 42(6): 680-698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38184438

RESUMEN

Algal-bacterial interactions are ubiquitous in both natural and industrial systems, and the characterization of these interactions has been reinvigorated by potential applications in biosystem productivity. Different growth conditions can be used for operational functions, such as the use of low-quality water or high pH/alkalinity, and the altered operating conditions likely constrain microbial community structure and function in unique ways. However, research is necessary to better understand whether consortia can be designed to improve the productivity, processing, and sustainability of industrial-scale cultivations through different controls that can constrain microbial interactions for maximal light-driven outputs. The review highlights current knowledge and gaps for relevant operating conditions, as well as suggestions for near-term and longer-term improvements for large-scale cultivation and polyculture engineering.


Asunto(s)
Microalgas , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo
14.
ISME Commun ; 4(1): ycae064, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38800128

RESUMEN

Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context provided by completed MGE assemblies.

15.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113613

RESUMEN

Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.


Asunto(s)
Adaptación Fisiológica , Aluminio , Biopelículas , Flagelos , Estrés Fisiológico , Biopelículas/crecimiento & desarrollo , Flagelos/genética , Flagelos/fisiología , Aluminio/toxicidad , Concentración de Iones de Hidrógeno , Nitratos/metabolismo , Agua Subterránea/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Nat Microbiol ; 9(2): 490-501, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212658

RESUMEN

Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.


Asunto(s)
Agua Subterránea , Microbiota , Filogenia , Procesos Estocásticos
17.
Appl Microbiol Biotechnol ; 97(8): 3625-42, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23463245

RESUMEN

A detailed physiological and molecular analysis of lipid accumulation under a suite of conditions including nitrogen limitation, alkaline pH stress, bicarbonate supplementation, and organic acid supplementation was performed on the marine diatom Phaeodactylum tricornutum. For all tested conditions, nitrogen limitation was a prerequisite for lipid accumulation and the other culturing strategies only enhanced accumulation highlighting the importance of compounded stresses on lipid metabolism. Volumetric lipid levels varied depending on condition; the observed rankings from highest to lowest were for inorganic carbon addition (15 mM bicarbonate), organic acid addition (15 carbon mM acetate), and alkaline pH stress (pH 9.0). For all lipid-accumulating cultures except acetate supplementation, a common series of physiological steps were observed. Upon extracellular nitrogen exhaustion, culture growth continued for approximately 1.5 cell doublings with decreases in specific protein and photosynthetic pigment content. As nitrogen limitation arrested cell growth, carbohydrate content decreased with a corresponding increase in lipid content. Addition of the organic carbon source acetate appeared to activate alternative metabolic pathways for lipid accumulation. Molecular level data on more than 50 central metabolism transcripts were measured using real-time PCR. Analysis of transcripts suggested the central metabolism pathways associated with bicarbonate transport, carbonic anhydrases, and C4 carbon fixations were important for lipid accumulation. Transcriptomic data also suggested that repurposing of phospholipids may play a role in lipid accumulation. This study provides a detailed physiological and molecular-level foundation for improved understanding of diatom nutrient cycling and contributes to a metabolic blueprint for controlling lipid accumulation in diatoms.


Asunto(s)
Carbono/metabolismo , Diatomeas/fisiología , Metabolismo de los Lípidos , Estrés Fisiológico , Álcalis/metabolismo , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/metabolismo , Organismos Acuáticos/fisiología , Ácidos Carboxílicos/metabolismo , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Front Microbiol ; 14: 1097500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970672

RESUMEN

The addition of small amounts of algal biomass to stimulate methane production in coal seams is a promising low carbon renewable coalbed methane enhancement technique. However, little is known about how the addition of algal biomass amendment affects methane production from coals of different thermal maturity. Here, we show that biogenic methane can be produced from five coals ranging in rank from lignite to low-volatile bituminous using a coal-derived microbial consortium in batch microcosms with and without algal amendment. The addition of 0.1 g/l algal biomass resulted in maximum methane production rates up to 37 days earlier and decreased the time required to reach maximum methane production by 17-19 days when compared to unamended, analogous microcosms. Cumulative methane production and methane production rate were generally highest in low rank, subbituminous coals, but no clear association between increasing vitrinite reflectance and decreasing methane production could be determined. Microbial community analysis revealed that archaeal populations were correlated with methane production rate (p = 0.01), vitrinite reflectance (p = 0.03), percent volatile matter (p = 0.03), and fixed carbon (p = 0.02), all of which are related to coal rank and composition. Sequences indicative of the acetoclastic methanogenic genus Methanosaeta dominated low rank coal microcosms. Amended treatments that had increased methane production relative to unamended analogs had high relative abundances of the hydrogenotrophic methanogenic genus Methanobacterium and the bacterial family Pseudomonadaceae. These results suggest that algal amendment may shift coal-derived microbial communities towards coal-degrading bacteria and CO2-reducing methanogens. These results have broad implications for understanding subsurface carbon cycling in coal beds and the adoption of low carbon renewable microbially enhanced coalbed methane techniques across a diverse range of coal geology.

19.
J Bacteriol ; 194(19): 5456-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22965085

RESUMEN

Pelosinus fermentans JBW45 is an anaerobic, lactate-fermenting bacterium isolated from Cr(VI)-contaminated groundwater at the Hanford Nuclear Reservation 100-H site (Washington) that was collected after stimulation with a polylactate compound. The genome sequence of this organism will provide insight into the metabolic potential of a predominant population during stimulation for metal-reducing conditions.


Asunto(s)
Cromo/metabolismo , Veillonellaceae/genética , Genoma Bacteriano , Agua Subterránea , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Oxidación-Reducción , Veillonellaceae/metabolismo
20.
BMC Genomics ; 13: 138, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22507456

RESUMEN

BACKGROUND: Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. RESULTS: The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells. CONCLUSIONS: Even though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Carbono/metabolismo , Desulfovibrio vulgaris/crecimiento & desarrollo , Desulfovibrio vulgaris/genética , Metabolismo Energético/genética , Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Reactores Biológicos/microbiología , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Análisis por Conglomerados , Desulfovibrio vulgaris/efectos de los fármacos , Desulfovibrio vulgaris/fisiología , Metabolismo Energético/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Ácido Láctico/farmacología , Microscopía Confocal , Modelos Biológicos , Plancton/citología , Plancton/efectos de los fármacos , Plancton/microbiología , Análisis de Componente Principal , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Sulfatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA