Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Med Genet A ; 188(9): 2738-2749, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35799415

RESUMEN

Maple syrup urine disease (MSUD) is an intoxication-type inherited metabolic disorder in which hyperleucinemia leads to brain swelling and death without treatment. MSUD is caused by branched-chain alpha-ketoacid dehydrogenase deficiency due to biallelic loss of the protein products from the genes BCKDHA, BCKDHB, or DBT, while a distinct but related condition is caused by loss of DLD. In this case series, eleven individuals with MSUD caused by two pathogenic variants in DBT are presented. All eleven individuals have a deletion of exon 2 (delEx2, NM_001918.3:c.48_171del); six individuals are homozygous and five individuals are compound heterozygous with a novel missense variant (NM_001918.5:c.916 T > C [p.Ser306Pro]) confirmed to be in trans. Western Blot indicates decreased amount of protein product in delEx2;c.916 T > C liver cells and absence of protein product in delEx2 homozygous hepatocytes. Ultrahigh performance liquid chromatography-tandem mass spectrometry demonstrates an accumulation of branched-chain amino acids and alpha-ketoacids in explanted hepatocytes. Individuals with these variants have a neonatal-onset, non-thiamine-responsive, classical form of MSUD. Strikingly, the entire cohort is derived from families who immigrated to the Washington, DC, metro area from Honduras or El Salvador suggesting the possibility of a founder effect.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , América Central , Genómica , Humanos , Recién Nacido , Enfermedad de la Orina de Jarabe de Arce/genética , Mutación
2.
Mol Genet Metab ; 133(1): 71-82, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33741272

RESUMEN

Propionic Acidemia (PA) and Methylmalonic Acidemia (MMA) are inborn errors of metabolism affecting the catabolism of valine, isoleucine, methionine, threonine and odd-chain fatty acids. These are multi-organ disorders caused by the enzymatic deficiency of propionyl-CoA carboxylase (PCC) or methylmalonyl-CoA mutase (MUT), resulting in the accumulation of propionyl-coenzyme A (P-CoA) and methylmalonyl-CoA (M-CoA in MMA only). Primary metabolites of these CoA esters include 2-methylcitric acid (MCA), propionyl-carnitine (C3), and 3-hydroxypropionic acid, which are detectable in both PA and MMA, and methylmalonic acid, which is detectable in MMA patients only (Chapman et al., 2012). We deployed liver cell-based models that utilized PA and MMA patient-derived primary hepatocytes to validate a small molecule therapy for PA and MMA patients. The small molecule, HST5040, resulted in a dose-dependent reduction in the levels of P-CoA, M-CoA (in MMA) and the disease-relevant biomarkers C3, MCA, and methylmalonic acid (in MMA). A putative working model of how HST5040 reduces the P-CoA and its derived metabolites involves the conversion of HST5040 to HST5040-CoA driving the redistribution of free and conjugated CoA pools, resulting in the differential reduction of the aberrantly high P-CoA and M-CoA. The reduction of P-CoA and M-CoA, either by slowing production (due to increased demands on the free CoA (CoASH) pool) or enhancing clearance (to replenish the CoASH pool), results in a net decrease in the CoA-derived metabolites (C3, MCA and MMA (MMA only)). A Phase 2 study in PA and MMA patients will be initiated in the United States.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Metilmalonil-CoA Descarboxilasa/genética , Metilmalonil-CoA Mutasa/genética , Acidemia Propiónica/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Acilcoenzima A/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Carnitina/metabolismo , Línea Celular , Citratos/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Metilmalonil-CoA Mutasa/deficiencia , Acidemia Propiónica/genética , Acidemia Propiónica/patología
3.
Mol Genet Metab ; 130(3): 183-196, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32451238

RESUMEN

Propionic acidemia (PA) and methylmalonic acidemia (MMA) are autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, which are caused by a deficiency in the enzyme propionyl-CoA carboxylase or the enzyme methylmalonyl-CoA (MM-CoA) mutase, respectively. The functional consequence of PA or MMA is the inability to catabolize P-CoA to MM-CoA or MM-CoA to succinyl-CoA, resulting in the accumulation of P-CoA and other metabolic intermediates, such as propionylcarnitine (C3), 3-hydroxypropionic acid, methylcitric acid (MCA), and methylmalonic acid (only in MMA). P-CoA and its metabolic intermediates, at high concentrations found in PA and MMA, inhibit enzymes in the first steps of the urea cycle as well as enzymes in the tricarboxylic acid (TCA) cycle, causing a reduction in mitochondrial energy production. We previously showed that metabolic defects of PA could be recapitulated using PA patient-derived primary hepatocytes in a novel organotypic system. Here, we sought to investigate whether treatment of normal human primary hepatocytes with propionate would recapitulate some of the biochemical features of PA and MMA in the same platform. We found that high levels of propionate resulted in high levels of intracellular P-CoA in normal hepatocytes. Analysis of TCA cycle intermediates by GC-MS/MS indicated that propionate may inhibit enzymes of the TCA cycle as shown in PA, but is also incorporated in the TCA cycle, which does not occur in PA. To better recapitulate the disease phenotype, we obtained hepatocytes derived from livers of PA and MMA patients. We characterized the PA and MMA donors by measuring key proximal biomarkers, including P-CoA, MM-CoA, as well as clinical biomarkers propionylcarnitine-to-acetylcarnitine ratios (C3/C2), MCA, and methylmalonic acid. Additionally, we used isotopically-labeled amino acids to investigate the contribution of relevant amino acids to production of P-CoA in models of metabolic stability or acute metabolic crisis. As observed clinically, we demonstrated that the isoleucine and valine catabolism pathways are the greatest sources of P-CoA in PA and MMA donor cells and that each donor showed differential sensitivity to isoleucine and valine. We also studied the effects of disodium citrate, an anaplerotic therapy, which resulted in a significant increase in the absolute concentration of TCA cycle intermediates, which is in agreement with the benefit observed clinically. Our human cell-based PA and MMA disease models can inform preclinical drug discovery and development where mouse models of these diseases are inaccurate, particularly in well-described species differences in branched-chain amino acid catabolism.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/patología , Aminoácidos/metabolismo , Citratos/metabolismo , Ciclo del Ácido Cítrico , Hepatocitos/patología , Ácido Metilmalónico/metabolismo , Acidemia Propiónica/patología , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Ácido Cítrico/farmacología , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Metilmalonil-CoA Descarboxilasa/metabolismo , Metilmalonil-CoA Mutasa/deficiencia , Propionatos/farmacología , Acidemia Propiónica/tratamiento farmacológico , Acidemia Propiónica/metabolismo
4.
Mol Genet Metab ; 117(3): 355-362, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26740382

RESUMEN

BACKGROUND: Propionic acidemia (PA) is a disorder of intermediary metabolism with defects in the alpha or beta subunits of propionyl CoA carboxylase (PCCA and PCCB respectively) enzyme. We previously described a liver culture system that uses liver-derived hemodynamic blood flow and transport parameters to restore and maintain primary human hepatocyte biology and metabolism utilizing physiologically relevant milieu concentrations. METHODS: In this study, primary hepatocytes isolated from the explanted liver of an 8-year-old PA patient were cultured in the liver system for 10 days and evaluated for retention of differentiated polarized morphology. The expression of PCCA and PCCB was assessed at a gene and protein level relative to healthy donor controls. Ammonia and urea levels were measured in the presence and absence of amino acid supplements to assess the metabolic consequences of branched-chain amino acid metabolism in this disease. RESULTS: Primary hepatocytes from the PA patient maintained a differentiated polarized morphology (peripheral actin staining) over 10 days of culture in the system. We noted lower levels of PCCA and PCCB relative to normal healthy controls at the mRNA and protein level. Supplementation of branched-chain amino acids, isoleucine (5mM) and valine (5mM) in the medium, resulted in increased ammonia and decreased urea in the PA patient hepatocyte system, but no such response was seen in healthy hepatocytes or patient-derived fibroblasts. CONCLUSIONS: We demonstrate for the first time the successful culture of PA patient-derived primary hepatocytes in a differentiated state, that stably retain the PCCA and PCCB enzyme defects at a gene and protein level. Phenotypic response of the system to an increased load of branched-chain amino acids, not possible with fibroblasts, underscores the utility of this system in the better understanding of the molecular pathophysiology of PA and examining the effectiveness of potential therapeutic agents in the most relevant tissue.


Asunto(s)
Hepatocitos/citología , Hepatocitos/metabolismo , Acidemia Propiónica/metabolismo , Actinas/análisis , Aminoácidos de Cadena Ramificada/metabolismo , Amoníaco/metabolismo , Ligasas de Carbono-Carbono/genética , Ligasas de Carbono-Carbono/metabolismo , Células Cultivadas , Niño , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Hemodinámica , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Humanos , Isoleucina/farmacología , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Metilmalonil-CoA Descarboxilasa/genética , Metilmalonil-CoA Descarboxilasa/metabolismo , Mutación , Urea/metabolismo , Valina/farmacología
5.
Arterioscler Thromb Vasc Biol ; 35(10): 2185-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26293464

RESUMEN

OBJECTIVES: The predictive value of animal and in vitro systems for drug development is limited, particularly for nonhuman primate studies as it is difficult to deduce the drug mechanism of action. We describe the development of an in vitro cynomolgus macaque vascular system that reflects the in vivo biology of healthy, atheroprone, or advanced inflammatory cardiovascular disease conditions. APPROACH AND RESULTS: We compare the responses of the in vitro human and cynomolgus vascular systems to 4 statins. Although statins exert beneficial pleiotropic effects on the human vasculature, the mechanism of action is difficult to investigate at the tissue level. Using RNA sequencing, we quantified the response to statins and report that most statins significantly increased the expression of genes that promote vascular health while suppressing inflammatory cytokine gene expression. Applying computational pathway analytics, we identified statin-regulated biological themes, independent of cholesterol lowering, that provide mechanisms for off-target effects, including thrombosis, cell cycle regulation, glycogen metabolism, and ethanol degradation. CONCLUSIONS: The cynomolgus vascular system described herein mimics the baseline and inflammatory regional biology of the human vasculature, including statin responsiveness, and provides mechanistic insight not achievable in vivo.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lipoproteínas LDL/efectos de los fármacos , Animales , Enfermedades Cardiovasculares/sangre , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Humanos , Técnicas In Vitro , Lipoproteínas LDL/metabolismo , Macaca fascicularis , Modelos Cardiovasculares , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Especificidad de la Especie
6.
Mol Pharmacol ; 85(2): 301-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24217444

RESUMEN

Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists.


Asunto(s)
Receptor de Adenosina A1/química , Receptor de Adenosina A1/fisiología , Regulación Alostérica , Animales , Sitios de Unión , Perros , Células HEK293 , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Especificidad de la Especie , Relación Estructura-Actividad
7.
Biochim Biophys Acta ; 1831(2): 407-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23168167

RESUMEN

The adenosine A(2A) receptor (A(2A)R) plays an important role in the regulation of inflammatory and immune responses. Our previous work has demonstrated that A(2A)R agonists exhibit atheroprotective effects by increasing expression of reverse cholesterol transport proteins in cultured human macrophages. This study explores the impact of pharmacologic activation/inhibition and gene silencing of A(2A)R on cholesterol homeostasis in both THP-1 human monocytes/macrophages and primary human aortic endothelial cells (HAEC). THP-1 human monocytes/macrophages and HAEC exposed to the A(2A)R-specific agonist ATL313 exhibited upregulation of proteins responsible for cholesterol efflux: the ABCA1 and G1 transporters. Further, activation of A(2A)R led to upregulation of the cholesterol metabolizing enzyme P450 27-hydroxylase, accompanied by intracellular changes in level of oxysterols. We demonstrate that anti-atherogenic properties of A(2A)R activation are not limited to the regulation of lipid efflux in vasculature, but include protection from lipid overload in macrophages, particularly via suppression of the CD36 scavenger receptor. The reduced lipid accumulation manifests directly as a diminution in foam cell transformation. In THP-1 macrophages, either A(2A)R pharmacological blockade or gene silencing promote lipid accumulation and enhance foam cell transformation. Our pre-clinical data provides evidence suggesting that A(2A)R stimulation by ATL313 has the potential to be a viable therapeutic strategy for cardiovascular disease prevention, particularly in patients with elevated risk due to immune/inflammatory disorders.


Asunto(s)
Colesterol/metabolismo , Endotelio Vascular/metabolismo , Macrófagos/metabolismo , Receptor de Adenosina A2A/metabolismo , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Endotelio Vascular/citología , Humanos , Microscopía Confocal , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa
8.
PLoS One ; 18(9): e0291330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682977

RESUMEN

Some health concerns are often not identified until late into clinical development of drugs, which can place participants and patients at significant risk. For example, the United States Food and Drug Administration (FDA) labeled the xanthine oxidase inhibitor febuxostat with a"boxed" warning regarding an increased risk of cardiovascular death, and this safety risk was only identified during Phase 3b clinical trials after its approval. Thus, better preclinical assessment of drug efficacy and safety are needed to accurately evaluate candidate drug risk earlier in discovery and development. This study explored whether an in vitro vascular model incorporating human vascular cells and hemodynamics could be used to differentiate the potential cardiovascular risk associated with molecules that have similar on-target mechanisms of action. We compared the transcriptomic responses induced by febuxostat and other xanthine oxidase inhibitors to a database of 111 different compounds profiled in the human vascular model. Of the 111 compounds in the database, 107 are clinical-stage and 33 are FDA-labelled for increased cardiovascular risk. Febuxostat induces pathway-level regulation that has high similarity to the set of drugs FDA-labelled for increased cardiovascular risk. These results were replicated with a febuxostat analog, but not another structurally distinct xanthine oxidase inhibitor that does not confer cardiovascular risk. Together, these data suggest that the FDA warning for febuxostat stems from the chemical structure of the medication itself, rather than the target, xanthine oxidase. Importantly, these data indicate that cardiovascular risk can be evaluated in this in vitro human vascular model, which may facilitate understanding the drug candidate safety profile earlier in discovery and development.


Asunto(s)
Enfermedades Cardiovasculares , Estados Unidos , Humanos , Enfermedades Cardiovasculares/inducido químicamente , Xantina Oxidasa , Febuxostat/farmacología , Factores de Riesgo , Inhibidores Enzimáticos/efectos adversos , Factores de Riesgo de Enfermedad Cardiaca
9.
Infect Immun ; 80(12): 4463-73, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23045479

RESUMEN

Clostridium difficile toxins A (TcdA) and B (TcdB) induce a pronounced systemic and intestinal inflammatory response. A(2B) adenosine receptors (A(2B)ARs) are the predominant adenosine receptors in the intestinal epithelium. We investigated whether A(2B)ARs are upregulated in human intestinal cells by TcdA or TcdB and whether blockade of A(2B)ARs can ameliorate C. difficile TcdA-induced enteritis and alter the outcome of C. difficile infection (CDI). Adenosine receptor subtype (A(1), A(2A), A(2B), and A(3)) mRNAs were assayed in HCT-8 cells. Ileal loops from wild-type rabbits and mice and A(2B)AR(-/-) mice were treated with TcdA, with or without the selective A(2B)AR antagonist ATL692 or PSB1115. A murine model of CDI was used to determine the effect of A(2B)AR deletion or blockade with the orally available agent ATL801, on clinical outcome, histopathology and intestinal interleukin-6 (IL-6) expression from infection. TcdA and TcdB upregulated A(2B)AR gene expression in HCT-8 cells. ATL692 decreased TcdA-induced secretion and epithelial injury in rabbit ileum. Deletion of A(2B)ARs reduced secretion and histopathology in TcdA-challenged mouse ileum. Deletion or blockade of A(2B)ARs reduced histopathology, IL-6 expression, weight loss, diarrhea, and mortality in C. difficile-infected mice. A(2B)ARs mediate C. difficile toxin-induced enteritis and disease. Inhibition of A(2B)AR activation may be a potential strategy to limit morbidity and mortality from CDI.


Asunto(s)
Clostridioides difficile/patogenicidad , Colon , Enterocolitis Seudomembranosa , Receptor de Adenosina A2B/metabolismo , Animales , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Línea Celular Tumoral , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Colon/microbiología , Colon/patología , Modelos Animales de Enfermedad , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/patología , Enterotoxinas/farmacología , Regulación de la Expresión Génica , Humanos , Íleon/microbiología , Íleon/patología , Ratones , Ratones Endogámicos C57BL , Conejos , Receptor de Adenosina A2B/genética
10.
BMC Infect Dis ; 12: 342, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23217055

RESUMEN

BACKGROUND: Activation of the A2A adenosine receptor (A2AAR) decreases production of inflammatory cytokines, prevents C. difficile toxin A-induced enteritis and, in combination with antibiotics, increases survival from sepsis in mice. We investigated whether A2AAR activation improves and A2AAR deletion worsens outcomes in a murine model of C. difficile (strain VPI10463) infection (CDI). METHODS: C57BL/6 mice were pretreated with an antibiotic cocktail prior to infection and then treated with vancomycin with or without an A2AAR agonist. A2AAR-/- and littermate wild-type (WT) mice were similarly infected, and IFNγ and TNFα were measured at peak of and recovery from infection. RESULTS: Infected, untreated mice rapidly lost weight, developed diarrhea, and had mortality rates of 50-60%. Infected mice treated with vancomycin had less weight loss and diarrhea during antibiotic treatment but mortality increased to near 100% after discontinuation of antibiotics. Infected mice treated with both vancomycin and an A2AAR agonist, either ATL370 or ATL1222, had minimal weight loss and better long-term survival than mice treated with vancomycin alone. A2AAR KO mice were more susceptible than WT mice to death from CDI. Increases in cecal IFNγ and blood TNFα were pronounced in the absence of A2AARs. CONCLUSION: In a murine model of CDI, vancomycin treatment resulted in reduced weight loss and diarrhea during acute infection, but high recurrence and late-onset death, with overall mortality being worse than untreated infected controls. The administration of vancomycin plus an A2AAR agonist reduced inflammation and improved survival rates, suggesting a possible benefit of A2AAR agonists in the management of CDI to prevent recurrent disease.


Asunto(s)
Antibacterianos/administración & dosificación , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/prevención & control , Receptor de Adenosina A2A/metabolismo , Vancomicina/administración & dosificación , Animales , Peso Corporal , Infecciones por Clostridium/mortalidad , Diarrea/tratamiento farmacológico , Diarrea/mortalidad , Diarrea/prevención & control , Modelos Animales de Enfermedad , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/inmunología , Prevención Secundaria , Análisis de Supervivencia
11.
BMC Infect Dis ; 12: 13, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22264229

RESUMEN

BACKGROUND: Severe Clostridium difficile toxin-induced enteritis is characterized by exuberant intestinal tissue inflammation, epithelial disruption and diarrhea. Adenosine, through its action on the adenosine A2A receptor, prevents neutrophillic adhesion and oxidative burst and inhibits inflammatory cytokine production. Alanyl-glutamine enhances intestinal mucosal repair and decreases apoptosis of enterocytes. This study investigates the protection from enteritis by combination therapy with ATL 370, an adenosine A2A receptor agonist, and alanyl-glutamine in a rabbit and murine intestinal loop models of C. difficile toxin A-induced epithelial injury. METHODS: Toxin A with or without alanyl-glutamine was administered intraluminally to rabbit ileal or murine cecal loops. Animals were also given either PBS or ATL 370 parenterally. Ileal tissues were examined for secretion, histopathology, apoptosis, Cxcl1/KC and IL-10. RESULTS: ATL 370 decreased ileal secretion and histopathologic changes in loops treated with Toxin A. These effects were reversed by the A2A receptor antagonist, SCH 58261, in a dose-dependent manner. The combination of ATL 370 and alanyl-glutamine significantly further decreased ileal secretion, mucosal injury and apoptosis more than loops treated with either drug alone. ATL 370 and alanyl-glutamine also decreased intestinal tissue KC and IL-10. CONCLUSIONS: Combination therapy with an adenosine A2A receptor agonist and alanyl-glutamine is effective in reversing C. difficile toxin A-induced epithelial injury, inflammation, secretion and apoptosis in animals and has therapeutic potential for the management of C. difficile infection.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/administración & dosificación , Toxinas Bacterianas/toxicidad , Clostridioides difficile/patogenicidad , Dipéptidos/administración & dosificación , Enterotoxinas/toxicidad , Ileítis/patología , Tiflitis/patología , Animales , Apoptosis , Modelos Animales de Enfermedad , Histocitoquímica , Ileítis/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Conejos , Resultado del Tratamiento , Tiflitis/prevención & control
12.
Arterioscler Thromb Vasc Biol ; 30(12): 2392-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21071696

RESUMEN

OBJECTIVE: To determine the role of platelets in stimulating mouse and human neutrophil activation and pulmonary injury in sickle cell disease (SCD). METHODS AND RESULTS: Both platelet and neutrophil activation occur in SCD, but the interdependence of these events is unknown. Platelet activation and binding to leukocytes were measured in mice and patients with SCD and in controls. Relative to controls, blood obtained from mice or patients with SCD contained significantly elevated platelet-neutrophil aggregates (PNAs). Both platelets and neutrophils found in sickle PNAs were activated. Multispectral imaging (ImageStream) and conventional flow cytometry revealed a subpopulation of activated neutrophils with multiple adhered platelets that expressed significantly more CD11b and exhibited greater oxidative activity than single neutrophils. On average, wild-type and sickle PNAs contained 1.1 and 2.6 platelets per neutrophil, respectively. Hypoxia/reoxygenation induced a further increase in PNAs in mice with SCD and additional activation of both platelets and neutrophils. The pretreatment of mice with SCD with clopidogrel or P-selectin antibody reduced the formation of PNAs and neutrophil activation and decreased lung vascular permeability. CONCLUSIONS: Our findings suggest that platelet binding activates neutrophils and contributes to a chronic inflammatory state and pulmonary dysfunction in SCD. The inhibition of platelet activation may be useful to decrease tissue injury in SCD, particularly during the early stages of vaso-occlusive crises.


Asunto(s)
Anemia de Células Falciformes/sangre , Plaquetas/inmunología , Activación Neutrófila , Neutrófilos/inmunología , Selectina-P/sangre , Activación Plaquetaria , Adhesividad Plaquetaria , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/inmunología , Animales , Anticuerpos/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Antígeno CD11b/metabolismo , Ligando de CD40/sangre , Permeabilidad Capilar , Estudios de Casos y Controles , Clopidogrel , Citometría de Flujo , Subunidades de Hemoglobina/genética , Subunidades de Hemoglobina/metabolismo , Humanos , Hipoxia/sangre , Hipoxia/inmunología , Pulmón/irrigación sanguínea , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Selectina-P/antagonistas & inhibidores , Activación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Estallido Respiratorio , Ticlopidina/análogos & derivados , Ticlopidina/farmacología
13.
J Immunol ; 182(8): 4616-23, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19342636

RESUMEN

The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.


Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Receptor de Adenosina A2B/inmunología , Animales , Antígeno B7-2/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Linfocitos T CD4-Positivos/inmunología , Técnicas de Cocultivo , AMP Cíclico/biosíntesis , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Interleucina-10/inmunología , Lipopolisacáridos/farmacología , Activación de Linfocitos/inmunología , Ratones , Receptor de Adenosina A2B/deficiencia , Receptor de Adenosina A2B/genética , Receptor de Adenosina A2B/metabolismo
14.
Hosp Top ; 89(2): 37-42, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21678142

RESUMEN

It is well known that the cost of healthcare in the United States is a poor value proposition. One of the primary goals of the healthcare reform act is to reduce cost while improving healthcare quality. The authors believe that adding a health coach helps to achieve this goal. In part I, the authors discuss the role of a health coach in the healthcare field. They present the findings from a pilot study at a primary care practice managing diabetes of patients using a health coach. The findings from the study suggest that adding a health coach helps in cost savings as well as improved health for the patients.


Asunto(s)
Consejo Dirigido , Enfermeras Clínicas , Atención Primaria de Salud , Análisis Costo-Beneficio , Diabetes Mellitus/terapia , Humanos , Proyectos Piloto , Rol Profesional , Evaluación de Programas y Proyectos de Salud
15.
Hosp Top ; 89(1): 16-22, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21360385

RESUMEN

The cost of healthcare in U.S. is a poor value proposition. One of the primary goals of the healthcare reform act is to reduce cost while improving healthcare quality. We believe that adding a health coach will help in achieving this goal. The health coach is a medical professional who supports both the physician and the patient by meeting previously established goals. This research presents and analyzes the key roles of a health coach in a primary care practice.


Asunto(s)
Enfermeras Clínicas , Atención Primaria de Salud/economía , Rol Profesional , Calidad de la Atención de Salud/economía , Reforma de la Atención de Salud , Humanos , Atención Primaria de Salud/normas , Estados Unidos
16.
Sci Rep ; 11(1): 5535, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692370

RESUMEN

Lung cancer rates are rising globally and non-small cell lung cancer (NSCLC) has a five year survival rate of only 24%. Unfortunately, the development of drugs to treat cancer is severely hampered by the inefficiency of translating pre-clinical studies into clinical benefit. Thus, we sought to apply a tumor microenvironment system (TMES) to NSCLC. Using microvascular endothelial cells, lung cancer derived fibroblasts, and NSCLC tumor cells in the presence of in vivo tumor-derived hemodynamic flow and transport, we demonstrate that the TMES generates an in-vivo like biological state and predicts drug response to EGFR inhibitors. Transcriptomic and proteomic profiling indicate that the TMES recapitulates the in vivo and patient molecular biological state providing a mechanistic rationale for the predictive nature of the TMES. This work further validates the TMES for modeling patient tumor biology and drug response indicating utility of the TMES as a predictive tool for drug discovery and development and potential for use as a system for patient avatars.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Endoteliales/metabolismo , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Microambiente Tumoral , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Células Endoteliales/patología , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Ratones SCID
17.
J Med Chem ; 64(8): 5037-5048, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33848153

RESUMEN

Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, caused by a deficiency in the enzymes P-CoA carboxylase and methylmalonyl-CoA (M-CoA) mutase, respectively. PA and MMA are classified as intoxication-type inborn errors of metabolism because the intramitochondrial accumulation of P-CoA, M-CoA, and other metabolites results in secondary inhibition of multiple pathways of intermediary metabolism, leading to organ dysfunction and failure. Herein, we describe the structure-activity relationships of a series of short-chain carboxylic acids which reduce disease-related metabolites in PA and MMA primary hepatocyte disease models. These studies culminated in the identification of 2,2-dimethylbutanoic acid (10, HST5040) as a clinical candidate for the treatment of PA and MMA. Additionally, we describe the in vitro and in vivo absorption, distribution, metabolism, and excretion profile of HST5040, data from preclinical studies, and the synthesis of the sodium salt of HST5040 for clinical trials.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Butiratos/uso terapéutico , Acidemia Propiónica/tratamiento farmacológico , Acilcoenzima A/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Área Bajo la Curva , Butiratos/química , Butiratos/metabolismo , Células Cultivadas , Perros , Evaluación Preclínica de Medicamentos , Semivida , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Ratones , Modelos Biológicos , Acidemia Propiónica/patología , Curva ROC , Ratas , Relación Estructura-Actividad
18.
JHEP Rep ; 3(2): 100217, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33490936

RESUMEN

BACKGROUND & AIMS: Increasing evidence highlights dietary fructose as a major driver of non-alcoholic fatty liver disease (NAFLD) pathogenesis, the majority of which is cleared on first pass through the hepatic circulation by enzymatic phosphorylation to fructose-1-phosphate via the ketohexokinase (KHK) enzyme. Without a current approved therapy, disease management emphasises lifestyle interventions, but few patients adhere to such strategies. New targeted therapies are urgently required. METHODS: We have used a unique combination of human liver specimens, a murine dietary model of NAFLD and human multicellular co-culture systems to understand the hepatocellular consequences of fructose administration. We have also performed a detailed nuclear magnetic resonance-based metabolic tracing of the fate of isotopically labelled fructose upon administration to the human liver. RESULTS: Expression of KHK isoforms is found in multiple human hepatic cell types, although hepatocyte expression predominates. KHK knockout mice show a reduction in serum transaminase, reduced steatosis and altered fibrogenic response on an Amylin diet. Human co-cultures exposed to fructose exhibit steatosis and activation of lipogenic and fibrogenic gene expression, which were reduced by pharmacological inhibition of KHK activity. Analysis of human livers exposed to 13C-labelled fructose confirmed that steatosis, and associated effects, resulted from the accumulation of lipogenic precursors (such as glycerol) and enhanced glycolytic activity. All of these were dose-dependently reduced by administration of a KHK inhibitor. CONCLUSIONS: We have provided preclinical evidence using human livers to support the use of KHK inhibition to improve steatosis, fibrosis, and inflammation in the context of NAFLD. LAY SUMMARY: We have used a mouse model, human cells, and liver tissue to test how exposure to fructose can cause the liver to store excess fat and become damaged and scarred. We have then inhibited a key enzyme within the liver that is responsible for fructose metabolism. Our findings show that inhibition of fructose metabolism reduces liver injury and fibrosis in mouse and human livers and thus this may represent a potential route for treating patients with fatty liver disease in the future.

19.
J Mol Cell Cardiol ; 49(5): 886-93, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20797398

RESUMEN

Ischemic preconditioning (IPC) is a protective phenomenon in which brief ischemia renders the myocardium resistant to subsequent ischemic insults. Here, we used A(2B)AR gene knock-out (A(2B)KO)/ß-galactosidase reporter gene knock-in mice and the A(2B)AR antagonist ATL-801 to investigate the potential involvement of the A(2B)AR in IPC, focusing on the acute phase of protection. Cardioprotection provided by acute IPC elicited by two 3-min occlusion/3-min reperfusion cycles was readily apparent in an isolated, Langendorff-perfused mouse heart model in studies using hearts from A(2B)KO mice. IPC equivalently improved the recovery of contractile function following 20 min of global ischemia and 45 min of reperfusion in both WT and A(2B)KO hearts by ~30-40%, and equivalently decreased the release of cardiac troponin I during the reperfusion period (from 5969 ± 925 to 1595 ± 674 ng/g and 4376 ± 739 to 2278 ± 462 ng/g using WT and A(2B)KO hearts, respectively). Similarly, the infarct size-reducing capacity of acute IPC in an in vivo model of infarction was fully manifested in experiments using A(2B)KO mice, as well as in experiments using rats pretreated with ATL-801. We did observe, however, a marked reduction in infarct size in rats following administration of the selective A(2B)AR agonist BAY 60-6583 (~25% reduction at a dose of 1.0mg/kg). While supportive of its concept as a cardioprotective receptor, these experiments indicate that the mechanism of the early phase of IPC is not dependent on signaling by the A(2B)AR. We present the idea that the A(2B)AR may contribute to the later stages of IPC dependent on the induction of stress-responsive genes.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Receptor de Adenosina A2B/metabolismo , Transducción de Señal , Aminopiridinas/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Pruebas de Función Cardíaca , Frecuencia Cardíaca/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
20.
Lab Chip ; 19(7): 1193-1204, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30839006

RESUMEN

The development of drugs to treat cancer is hampered by the inefficiency of translating pre-clinical in vitro monoculture and mouse studies into clinical benefit. There is a critical need to improve the accuracy of evaluating pre-clinical drug efficacy through the development of more physiologically relevant models. In this study, a human triculture 3D in vitro tumor microenvironment system (TMES) was engineered to accurately mimic the tumor microenvironment. The TMES recapitulates tumor hemodynamics and biological transport with co-cultured human microvascular endothelial cells, pancreatic ductal adenocarcinoma, and pancreatic stellate cells. We demonstrate that significant tumor cell transcriptomic changes occur in the TMES that correlate with the in vivo xenograft and patient transcriptome. Treatment with therapeutically relevant doses of chemotherapeutics yields responses paralleling the patients' clinical responses. Thus, this model provides a unique platform to rigorously evaluate novel therapies and is amenable to using patient tumor material directly, with applicability for patient avatars.


Asunto(s)
Biomimética/métodos , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Microambiente Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA