Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863244

RESUMEN

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Asunto(s)
Glioblastoma/genética , Glioblastoma/patología , Invasividad Neoplásica/genética , Proteína Wnt-5a/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Epigenómica , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Factor de Transcripción PAX6/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo
2.
Cell ; 155(2): 462-77, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120142

RESUMEN

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neoplasias Encefálicas/metabolismo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Mutación , Proteoma/análisis , Transducción de Señal
3.
Nature ; 576(7785): 112-120, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31748746

RESUMEN

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at different rates across the glioma subtypes, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner.


Asunto(s)
Glioma/genética , Adulto , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 19 , Progresión de la Enfermedad , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Polimorfismo de Nucleótido Simple , Recurrencia
4.
Curr Opin Oncol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39011725

RESUMEN

PURPOSE OF REVIEW: Due to limited access to the tumor, there is an obvious clinical potential for liquid biopsy in patients with primary brain tumors. Here, we review current approaches, present limitations to be dealt with, and new promising data that may impact the field. RECENT FINDINGS: The value of circulating tumor cell-free DNA (ctDNA) in the cerebrospinal fluid (CSF) for the noninvasive diagnosis of primary brain tumors has been confirmed in several reports. The detection of ctDNA in the peripheral blood is desirable for patient follow-up but requires ultrasensitive methods to identify low mutant allelic frequencies. Digital PCR approaches and targeted gene panels have been used to identify recurrent hotspot mutations and copy number variations (CNVs) from CSF or plasma. Tumor classification from circulating methylomes in plasma has been actively pursued, although the need of advanced bioinformatics currently hampers clinical application. The use of focused ultrasounds to open the blood-brain barrier may represent a way to enrich of ctDNA the peripheral blood and enhance plasma-based liquid biopsy. SUMMARY: Monitoring CNVs and hotspot mutations by liquid biopsy is a promising tool to detect minimal residual disease and strengthen response assessment in patients with primary brain tumors. Novel methods to increase the relative and/or absolute amount of ctDNA can improve the clinical potential of plasma-based liquid biopsies.

5.
Brain ; 146(10): 4015-4024, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37289981

RESUMEN

The clinical role of liquid biopsy in oncology is growing significantly. In gliomas and other brain tumours, targeted sequencing of cell-free DNA (cfDNA) from CSF may help differential diagnosis when surgery is not recommended and be more representative of tumour heterogeneity than surgical specimens, unveiling targetable genetic alterations. Given the invasive nature of lumbar puncture to obtain CSF, the quantitative analysis of cfDNA in plasma is a lively option for patient follow-up. Confounding factors may be represented by cfDNA variations due to concomitant pathologies (inflammatory diseases, seizures) or clonal haematopoiesis. Pilot studies suggest that methylome analysis of cfDNA from plasma and temporary opening of the blood-brain barrier by ultrasound have the potential to overcome some of these limitations. Together with this, an increased understanding of mechanisms modulating the shedding of cfDNA by the tumour may help to decrypt the meaning of cfDNA kinetics in blood or CSF.


Asunto(s)
Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Humanos , Biopsia Líquida , Ácidos Nucleicos Libres de Células/genética , Mutación/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética
6.
J Neurooncol ; 163(1): 47-59, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37140883

RESUMEN

PURPOSE: Patient-derived cancer cell lines can be very useful to investigate genetic as well as epigenetic mechanisms of transformation and to test new drugs. In this multi-centric study, we performed genomic and transcriptomic characterization of a large set of patient-derived glioblastoma (GBM) stem-like cells (GSCs). METHODS: 94 (80 I surgery/14 II surgery) and 53 (42 I surgery/11 II surgery) GSCs lines underwent whole exome and trascriptome analysis, respectively. RESULTS: Exome sequencing revealed TP53 as the main mutated gene (41/94 samples, 44%), followed by PTEN (33/94, 35%), RB1 (16/94, 17%) and NF1 (15/94, 16%), among other genes associated to brain tumors. One GSC sample bearing a BRAF p.V600E mutation showed sensitivity in vitro to a BRAF inhibitor. Gene Ontology and Reactome analysis uncovered several biological processes mostly associated to gliogenesis and glial cell differentiation, S - adenosylmethionine metabolic process, mismatch repair and methylation. Comparison of I and II surgery samples disclosed a similar distribution of mutated genes, with an overrepresentation of mutations in mismatch repair, cell cycle, p53 and methylation pathways in I surgery samples, and of mutations in receptor tyrosine kinase and MAPK signaling pathways in II surgery samples. Unsupervised hierarchical clustering of RNA-seq data produced 3 clusters characterized by distinctive sets of up-regulated genes and signaling pathways. CONCLUSION: The availability of a large set of fully molecularly characterized GCSs represents a valuable public resource to support the advancement of precision oncology for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Transcriptoma , Proteínas Proto-Oncogénicas B-raf/genética , Células Madre Neoplásicas/patología , Medicina de Precisión , Neoplasias Encefálicas/patología
7.
Neurol Sci ; 44(9): 3271-3277, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37067723

RESUMEN

INTRODUCTION: The differential diagnosis of brain diseases becomes challenging in cases where imaging is not sufficiently informative, and surgical biopsy is impossible or unacceptable to the patient. METHODS: An elderly patient with progressive short-term memory loss and cognitive impairment presented with a normal brain CT scan, a brain FDG-PET that indicated symmetrical deterioration of the white matter in the frontal lobes, and inconclusive results of a molecular marker analysis of suspected dementia in cerebrospinal fluid (CSF). Brain MRI suggested the diagnosis of lower grade glioma. The patient refused surgical biopsy. In order to investigate whether somatic mutations associated with gliomas existed, we performed a "liquid biopsy" by the targeted sequencing of cell-free DNA (cfDNA) from his CSF. RESULTS: Deep sequencing of the cfDNA from CSF revealed somatic mutations characteristically found in gliomas, including mutations of the TP53 (Arg282Trp), BRAF (Val600Glu), and IDH1 (Arg132His) genes. The patient is currently treated with temozolomide, and his clinical and MRI findings suggest the stabilization of his disease. CONCLUSION: Neurological patients may benefit from liquid biopsy diagnostic work-up as it can reveal therapeutically targetable mutations.


Asunto(s)
Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Glioma , Enfermedades Neurodegenerativas , Humanos , Anciano , Glioma/diagnóstico , Glioma/diagnóstico por imagen , Biopsia Líquida/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagen , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Mutación/genética
8.
Curr Opin Oncol ; 34(6): 653-660, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36000367

RESUMEN

PURPOSE OF REVIEW: Immunotherapeutic approaches have yet to demonstrate their clinical efficacy in diffuse gliomas. Evidence is mounting that the central nervous system is subject to immune surveillance, but brain tumours manage to escape due to factors intrinsic to their tumoral immune microenvironment (TME). This review aims to discuss the recently characterized molecular bases of the glioma TME and the potentially actionable targets to improve immunotherapeutic results in these hard-to-treat cancers. RECENT FINDINGS: Single-cell studies defined the composition of the glioma immune TME and its peculiarities compared with other solid cancers. In isocitrate dehydrogenase (IDH) wildtype gliomas, the TME is enriched in myeloid cells (monocyte-derived macrophages and resident microglia) with mainly immunosuppressive functions. Lymphocytes can infiltrate the glioma TME, but are exposed to multiple immunomodulating signals that render them in a state of deep exhaustion. IDH mutant gliomas produce the oncometabolite D-2-hydroxyglutarate with negative effects on leukocyte recruitment and function, resulting in the induction of an 'immune-desert' TME. SUMMARY: Several molecular pathways have been recently identified in the induction of an 'immune-hostile' microenvironment in diffuse gliomas, unravelling potential vulnerabilities to targeted immunotherapies.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Humanos , Inmunoterapia , Isocitrato Deshidrogenasa/genética , Mutación , Microambiente Tumoral
9.
Oncologist ; 26(12): e2254-e2264, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34498344

RESUMEN

BACKGROUND: Bevacizumab has been studied in numerous clinical trials in multiple types of cancer; however, patients may receive bevacizumab over an extended period of time. This study assessed the long-term safety and tolerability of bevacizumab among patients with solid tumors. MATERIALS AND METHODS: Patients enrolled in a Roche/Genentech-sponsored trial who had derived benefit from bevacizumab therapy as monotherapy or in combination with anticancer drugs were eligible for continuation of bevacizumab in this long-term extension (LTE) study. The primary endpoints were the incidence of adverse events (AEs) of Common Terminology Criteria for AEs (CTCAE) grade ≥3 related to bevacizumab treatment, serious AEs (SAEs), and deaths. RESULTS: Ninety-five patients with the following cancer types were enrolled in the LTE: ovarian cancer or peritoneal carcinoma (n = 41), non-small cell lung cancer (n = 16), glioblastoma multiforme (n = 14), breast cancer (n = 11), colorectal cancer (n = 7), or renal cell carcinoma (n = 6). The median (range) duration of bevacizumab treatment was 15.6 (0.0-81.0) months during the LTE and 57.5 (16.4-134.9) months overall (parent trial + LTE), with three patients receiving bevacizumab for >10 years. Overall, 17 patients (17.9%) experienced SAEs, and 21 (22.1%) had a bevacizumab-related AE of CTCAE grade ≥3 (proteinuria and hypertension were the most common). Four patients died: three from disease progression and one from an AE considered unrelated to bevacizumab. CONCLUSION: The safety outcomes observed support the tolerability of long-term bevacizumab in patients with various solid tumors, with a median extended treatment duration of almost 5 years overall and >10 years in some individual patients. ClinicalTrials.gov identifier: NCT01588184. IMPLICATIONS FOR PRACTICE: In this long-term extension study of patients with solid tumors, the median duration of bevacizumab treatment (including parent trials) was just under 5 years, with a long-term exposure in some patients of 7 to >10 years. Grade ≥3 adverse events related to bevacizumab were consistent with the established safety profile, with proteinuria and hypertension being the most common. Patients received bevacizumab over an extended period of time (beyond the length of most clinical trials), and the overall safety outcomes observed support the tolerability of long-term bevacizumab treatment in patients with solid tumors, with clinical benefit achieved over an extended period.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Renales , Neoplasias Pulmonares , Neoplasias Ováricas , Bevacizumab/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Femenino , Humanos
10.
Cancer Immunol Immunother ; 70(3): 831-842, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33140187

RESUMEN

BACKGROUND: Glioblastomas (GBMs) in patients harboring somatic or germinal mutations of mismatch-repair (MMR) genes exhibit a hypermutable phenotype. Here, we describe a GBM patient with increased tumor mutational burden and germline MMR mutations, treated using anti-PD1 therapy. METHODS: A woman with newly diagnosed GBM (nGBM) was treated by surgery, radiotherapy, and temozolomide. The tumor recurred after 13 months leading to a second surgery and treatment with nivolumab. Whole-exome sequencing was performed on the nGBM, recurrent GBM (rGBM), and blood. Immune infiltration was investigated by immunohistochemistry and the immune response in the blood during treatment was analyzed by flow cytometry. RESULTS: High density of infiltrating CD163 + cells was found in both GBM specimens. Large numbers of CD3 + and CD8 + T cells were homogeneously distributed in the nGBM. The infiltration of CD4 + T cells and a different CD8 + T cell density were observed in the rGBM. Both GBM shared 12,431 somatic mutations, with 113 substitutions specific to the nGBM and 1,683 specific to the rGBM. Germline variants included pathogenic mutation in the MSH2 (R359S) gene, suggesting the diagnosis of Lynch syndrome. Systemic immunophenotyping revealed the generation of CD8 + T memory cells and persistent activation of CD4 + T cells. The patient is still receiving nivolumab 68 months after the second surgery. CONCLUSIONS: Our observations indicate that the hypermutator phenotype associated with germinal mutations of MMR genes and abundant T-cell infiltration contributes to a durable clinical benefit sustained by a persistent and robust immune response during anti-PD1 therapy.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Glioblastoma/patología , Mutación , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto , Biopsia , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/tratamiento farmacológico , Terapia Combinada , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunohistoquímica , Imagen por Resonancia Magnética , Terapia Molecular Dirigida , Recurrencia Local de Neoplasia , Neuroimagen , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Retratamiento , Linfocitos T/efectos de los fármacos , Resultado del Tratamiento , Secuenciación del Exoma
11.
Brain ; 142(4): 847-866, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30946477

RESUMEN

The complexity of glioblastoma multiforme, the most common and lethal variant of gliomas, is reflected by cellular and molecular heterogeneity at both the inter- and intra-tumoural levels. Molecular subtyping has arisen in the past two decades as a promising strategy to give better predictions of glioblastoma multiforme evolution, common disease pathways, and rational treatment options. The Cancer Genome Atlas network initially identified four molecular subtypes of glioblastoma multiforme: proneural, neural, mesenchymal and classical. However, further studies, also investigated glioma stem cells, have only identified two to three subtypes: proneural, mesenchymal and classical. The proneural-mesenchymal transition upon tumour recurrence has been suggested as a mechanism of tumour resistance to radiation and chemotherapy treatment. Glioblastoma multiforme patients with the mesenchymal subtype tend to survive shorter than other subtypes when analysis is restricted to samples with low transcriptional heterogeneity. Although the mesenchymal signature in malignant glioma may seem at odds with the common idea of the ectodermal origin of neural-glial lineages, the presence of the mesenchymal signature in glioma is supported by several studies suggesting that it can result from: (i) intrinsic expression of tumour cells affected with accumulated genetic mutations and cell of origin; (ii) tumour micro-environments with recruited macrophages or microglia, mesenchymal stem cells or pericytes, and other progenitors; (iii) resistance to tumour treatment, including radiotherapy, antiangiogenic therapy and possibly chemotherapy. Genetic abnormalities, mainly NF1 mutations, together with NF-κB transcriptional programs, are the main driver of acquiring mesenchymal-signature. This signature is far from being simply tissue artefacts, as it has been identified in single cell glioma, circulating tumour cells, and glioma stem cells that are released from the tumour micro-environment. All these together suggest that the mesenchymal signature in glioblastoma multiforme is induced and sustained via cell intrinsic mechanisms and tumour micro-environment factors. Although patients with the mesenchymal subtype tend to have poorer prognosis, they may have favourable response to immunotherapy and intensive radio- and chemotherapy.


Asunto(s)
Glioblastoma/genética , Glioblastoma/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/clasificación , Glioma/genética , Humanos , Recurrencia Local de Neoplasia , Células Madre Neoplásicas/patología , Transducción de Señal , Microambiente Tumoral
12.
Neurol Sci ; 41(2): 347-355, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31650436

RESUMEN

Isocitrate dehydrogenase 1/2 (IDH1/2) mutations are often detected in lower-grade gliomas (LGG) and result into 2-hydroxyglutarate (2HG) synthesis. Prior studies showed that 2HG can be detected in vivo using magnetic resonance spectroscopy (MRS), but its accuracy and translational impact are still under investigation. PURPOSE: To investigate the clinical feasibility of MRS for in vivo detection and quantification of 2HG on consecutive treatment-naïve suspect LGG patients and to compare MRS accuracy with tissue IDH1/2 analysis. METHODS: MRS spectra at 3 T were acquired with 1H-MRS single-voxel PRESS 2HG-tailored sequences with TE 30 (group 1) or TE 97 (groups 2A and B). Voxel sizes were 1.5 × 1.5 × 1.5 cm3 for group 1 (n = 13) and group 2A (n = 14) and 2 × 2 × 2 cm3 for group 2B (n = 32). Multiple metabolites' concentrations were analyzed with LCModel. Tumors were assessed for IDH status and main molecular markers. 2HG levels in urine/blood were measured by liquid chromatography-mass spectrometry. RESULTS: The larger voxel TE 97 sequence resulted in highest specificity (100%), sensitivity (79%), and accuracy (87%). Urine and blood 2HG did not result predictive. CONCLUSION: Our data confirm that 2 × 2 × 2-cm3 voxel TE 97 MRS shows high accuracy for 2HG detection, with good sensitivity and 100% specificity in distinguishing IDH mutant gliomas. Main limits of the technique are small tumor volume and low cellularity. Integrating 2HG-MRS with other metabolites may help non-invasive diagnosis of glioma, prognostic assessment, and treatment planning in clinical setting.


Asunto(s)
Glioma/tratamiento farmacológico , Glioma/patología , Glutaratos/farmacología , Espectroscopía de Protones por Resonancia Magnética , Biomarcadores/análisis , Estudios de Factibilidad , Femenino , Humanos , Isocitrato Deshidrogenasa/genética , Espectroscopía de Resonancia Magnética/métodos , Masculino , Pronóstico , Espectroscopía de Protones por Resonancia Magnética/métodos
13.
Int J Cancer ; 144(10): 2539-2554, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30418668

RESUMEN

In glioma patients, high levels of glutamate can cause brain edema and seizures. GLAST, a glutamate-aspartate transporter expressed by astrocytes with a role in glutamate uptake, is highly expressed on the plasma membrane of glioblastoma (GBM) cells, and its expression significantly correlates with shortened patient survival. Here, it was demonstrated that inhibition of GLAST expression limited the progression and invasion of GBM xenografts. Magnetic resonance spectroscopy was used to measure glutamate in GLAST-expressing gliomas showing that these tumors exhibit increased glutamate concentration compared to GLAST-depleted glioma. Despite their GLAST expression, GBM stem-like cells (GSCs) released rather than taking up glutamate due to their lack of Na+/K+-ATPase. Overexpression of Na+/K+-ATPase in these cells restored glutamate uptake and induced apoptosis. The therapeutic relevance of targeting GLAST in gliomas was assessed using the inhibitor UCPH-101. In glioma-bearing mice, a single intratumoral injection of UCPH-101 significantly increased survival by decreasing GLAST expression and inducing apoptosis. Thus, GLAST has a novel role in GBM that appears to have crucial relevance in glutamate trafficking and may thus be a new therapeutic target.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Glioblastoma/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Ácido Aspártico/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Benzopiranos/farmacología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Femenino , Glioma/metabolismo , Ácido Glutámico/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
14.
Oncologist ; 24(4): 521-528, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30266892

RESUMEN

BACKGROUND: We assessed the efficacy and safety of bevacizumab (BEV) through multiple lines in patients with recurrent glioblastoma who had progressed after first-line treatment with radiotherapy, temozolomide, and BEV. PATIENTS AND METHODS: TAMIGA (NCT01860638) was a phase II, randomized, double-blind, placebo-controlled, multicenter trial in adult patients with glioblastoma. Following surgery, patients with newly diagnosed glioblastoma received first-line treatment consisting of radiotherapy plus temozolomide and BEV, followed by six cycles of temozolomide and BEV, then BEV monotherapy until disease progression (PD1). Randomization occurred at PD1 (second line), and patients received lomustine (CCNU) plus BEV (CCNU + BEV) or CCNU plus placebo (CCNU + placebo) until further disease progression (PD2). At PD2 (third line), patients continued BEV or placebo with chemotherapy (investigator's choice). The primary endpoint was survival from randomization. Secondary endpoints were progression-free survival in the second and third lines (PFS2 and PFS3) and safety. RESULTS: Of the 296 patients enrolled, 123 were randomized at PD1 (CCNU + BEV, n = 61; CCNU + placebo, n = 62). The study was terminated prematurely because of the high drop-out rate during first-line treatment, implying underpowered inferential testing. The proportion of patients receiving corticosteroids at randomization was similar (BEV 33%, placebo 31%). For the CCNU + BEV and CCNU + placebo groups, respectively, median survival from randomization was 6.4 versus 5.5 months (stratified hazard ratio [HR], 1.04; 95% confidence interval [CI], 0.69-1.59), median PFS2 was 2.3 versus 1.8 months (stratified HR, 0.70; 95% CI, 0.48-1.00), median PFS3 was 2.0 versus 2.2 months (stratified HR, 0.70; 95% CI, 0.37-1.33), and median time from randomization to a deterioration in health-related quality of life was 1.4 versus 1.3 months (stratified HR, 0.76; 95% CI, 0.52-1.12). The incidence of treatment-related grade 3 to 4 adverse events was 19% (CCNU + BEV) versus 15% (CCNU + placebo). CONCLUSION: There was no survival benefit and no detriment observed with continuing BEV through multiple lines in patients with recurrent glioblastoma. IMPLICATIONS FOR PRACTICE: Previous research suggested that there may be value in continuing bevacizumab (BEV) beyond progression through multiple lines of therapy. No survival benefit was observed with the use of BEV through multiple lines in patients with glioblastoma who had progressed after first-line treatment (radiotherapy + temozolomide + BEV). No new safety concerns arose from the use of BEV through multiple lines of therapy.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adulto , Anciano , Neoplasias Encefálicas/patología , Método Doble Ciego , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Pronóstico , Tasa de Supervivencia
15.
Curr Opin Oncol ; 31(6): 554-561, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31436563

RESUMEN

PURPOSE OF REVIEW: The current review summarizes recent advances on three important issues in neurofibromatosis type 1 (NF1) management: the identification of specific NF1 gene mutations predicting the risk for developing neurological malignancies; the molecular features of NF1-associated tumors and their differences from sporadic neoplasms; genetic, epigenetic, or microenviromental factors leading benign tumors to a malignant transformation in NF1. RECENT FINDINGS: The association between the risk of developing optic pathway glioma and specific germiline NF1 mutations is still debated and further studies are needed with large, new cohorts of patients. The available evidences suggest that gliomas and malignant peripheral nerve sheath tumors (MPNSTs) in NF1 have a distinct genetic signatures, different from those observed in sporadic neoplasms. Some neoplasms, very rare in general population, such as subependymal giant cell astrocytoma, can be observed in NF1. A subgroup of low-grade NF1-gliomas, some MPNSTs and plexiform neurofibromas contain abundant T lymphocyte infiltrates suggesting that immunotherapy could be a potential therapeutic approach. SUMMARY: These data support the notion that next-generation sequencing efforts are helpful in the genetic characterization of NF1-associated malignancies A better knowledge of those tumors at the genomic level, is essential for addressing new treatments and may contribute to a deeper comprehension of NF1/RAS signaling also in sporadic cancers.


Asunto(s)
Neurofibromatosis 1/patología , Glioma del Nervio Óptico/patología , Animales , Transformación Celular Neoplásica , Mutación de Línea Germinal , Humanos , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Glioma del Nervio Óptico/genética
17.
Int J Mol Sci ; 20(23)2019 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771235

RESUMEN

Recently, we found that temozolomide (TMZ) can upregulate the expression of the multidrug-resistance protein ABCC3 in NK cells from both glioma-bearing mice and glioblastoma patients treated with dendritic cell immunotherapy combined with TMZ, allowing NK cells to escape apoptosis and favoring their role as antitumor effector cells. Here, we demonstrate that CD56dim NK cells expressing CD16+ are predominant in patients surviving more than 12 months after surgery without disease progression. CD56dim CD16+ NK cells co-expressed high levels of ABCC3 and IFN-. Notably, not only basal but also TMZ-induced ABCC3 expression was related to a strong, long-term NK cell response and a better prognosis of patients. The identification of the single nucleotide polymorphism (SNP) rs35467079 with the deletion of a cytosine (-897DelC) in the promoter region of the ABCC3 gene resulted associated with a better patient outcome. ABCC3 expression in patients carrying DelC compared to patients with reference haplotype was higher and modulated by TMZ. The transcription factor NRF2, involved in ABCC3 induction, was phosphorylated in CD56dim CD16+ NK cells expressing ABCC3 under TMZ treatment. Thus, ABCC3 protein and the SNP -897DelC can play a predictive role in patients affected by GBM, and possibly other cancers, treated with dendritic cell immunotherapy combined with chemotherapy.


Asunto(s)
Células Dendríticas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Células Asesinas Naturales/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptores de IgG/metabolismo , Adulto , Anciano , Citotoxicidad Inmunológica/fisiología , Femenino , Glioblastoma/terapia , Humanos , Inmunoterapia/métodos , Masculino , Persona de Mediana Edad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Adulto Joven
18.
Stem Cells ; 35(11): 2218-2228, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28895245

RESUMEN

Glioblastoma (GBM) is a lethal tumor that displays remarkable genetic heterogeneity. It is also known that GBM contains a cell hierarchy driven by GBM stem-like cells (GSCs), responsible for tumor generation, therapeutic resistance, and relapse. An important and still open issue is whether phylogenetically related GSCs can be found in matched primary and recurrent GBMs, and reflect tumor genetic evolution under therapeutic pressure. To address this, we analyzed the mutational profile of GSCs isolated from either human primary GBMs (primary GSCs) or their matched tumors recurring after surgery and chemoradiotherapy (recurrent GSCs). We found that recurrent GSCs can accumulate temozolomide-related mutations over primary GSCs, following both linear and branched patterns. In the latter case, primary and recurrent GSCs share a common set of lesions, but also harbor distinctive mutations indicating that primary and recurrent GSCs derive from a putative common ancestor GSC by divergent genetic evolution. Interestingly, TP53 mutations distinctive of recurrent GSCs were detectable at low frequency in the corresponding primary tumors and likely marked pre-existent subclones that evolved under therapeutic pressure and expanded in the relapsing tumor. Consistently, recurrent GSCs displayed in vitro greater therapeutic resistance than primary GSCs. Overall, these data indicate that (a) phylogenetically related GSCs are found in matched primary and recurrent GBMs and (b) recurrent GSCs likely pre-exist in the untreated primary tumor and are both mutagenized and positively selected by chemoradiotherapy. Stem Cells 2017;35:2218-2228.


Asunto(s)
Dosificación de Gen/genética , Glioblastoma/genética , Células Madre Neoplásicas/metabolismo , Adulto , Animales , Evolución Molecular , Femenino , Glioblastoma/patología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/patología
19.
EMBO Rep ; 17(12): 1872-1889, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27852622

RESUMEN

MYC deregulation is common in human cancer and has a role in sustaining the aggressive cancer stem cell populations. MYC mediates a broad transcriptional response controlling normal biological programmes, but its activity is not clearly understood. We address MYC function in cancer stem cells through the inducible expression of Omomyc-a MYC-derived polypeptide interfering with MYC activity-taking as model the most lethal brain tumour, glioblastoma. Omomyc bridles the key cancer stemlike cell features and affects the tumour microenvironment, inhibiting angiogenesis. This occurs because Omomyc interferes with proper MYC localization and itself associates with the genome, with a preference for sites occupied by MYC This is accompanied by selective repression of master transcription factors for glioblastoma stemlike cell identity such as OLIG2, POU3F2, SOX2, upregulation of effectors of tumour suppression and differentiation such as ID4, MIAT, PTEN, and modulation of the expression of microRNAs that target molecules implicated in glioblastoma growth and invasion such as EGFR and ZEB1. Data support a novel view of MYC as a network stabilizer that strengthens the regulatory nodes of gene expression networks controlling cell phenotype and highlight Omomyc as model molecule for targeting cancer stem cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes myc , Glioblastoma/genética , Células Madre Neoplásicas/fisiología , Fragmentos de Péptidos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética , Inhibidores de la Angiogénesis , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Proliferación Celular , Receptores ErbB/genética , Glioblastoma/fisiopatología , Humanos , Proteínas Inhibidoras de la Diferenciación/genética , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Unión Proteica , Activación Transcripcional , Microambiente Tumoral/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
20.
Lancet Oncol ; 18(10): 1373-1385, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28844499

RESUMEN

BACKGROUND: Rindopepimut (also known as CDX-110), a vaccine targeting the EGFR deletion mutation EGFRvIII, consists of an EGFRvIII-specific peptide conjugated to keyhole limpet haemocyanin. In the ACT IV study, we aimed to assess whether or not the addition of rindopepimut to standard chemotherapy is able to improve survival in patients with EGFRvIII-positive glioblastoma. METHODS: In this randomised, double-blind, phase 3 trial, we recruited patients aged 18 years and older with glioblastoma from 165 hospitals in 22 countries. Eligible patients had newly diagnosed glioblastoma confirmed to express EGFRvIII by central analysis, and had undergone maximal surgical resection and completion of standard chemoradiation without progression. Patients were stratified by European Organisation for Research and Treatment of Cancer recursive partitioning analysis class, MGMT promoter methylation, and geographical region, and randomly assigned (1:1) with a prespecified randomisation sequence (block size of four) to receive rindopepimut (500 µg admixed with 150 µg GM-CSF) or control (100 µg keyhole limpet haemocyanin) via monthly intradermal injection until progression or intolerance, concurrent with standard oral temozolomide (150-200 mg/m2 for 5 of 28 days) for 6-12 cycles or longer. Patients, investigators, and the trial funder were masked to treatment allocation. The primary endpoint was overall survival in patients with minimal residual disease (MRD; enhancing tumour <2 cm2 post-chemoradiation by central review), analysed by modified intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01480479. FINDINGS: Between April 12, 2012, and Dec 15, 2014, 745 patients were enrolled (405 with MRD, 338 with significant residual disease [SRD], and two unevaluable) and randomly assigned to rindopepimut and temozolomide (n=371) or control and temozolomide (n=374). The study was terminated for futility after a preplanned interim analysis. At final analysis, there was no significant difference in overall survival for patients with MRD: median overall survival was 20·1 months (95% CI 18·5-22·1) in the rindopepimut group versus 20·0 months (18·1-21·9) in the control group (HR 1·01, 95% CI 0·79-1·30; p=0·93). The most common grade 3-4 adverse events for all 369 treated patients in the rindopepimut group versus 372 treated patients in the control group were: thrombocytopenia (32 [9%] vs 23 [6%]), fatigue (six [2%] vs 19 [5%]), brain oedema (eight [2%] vs 11 [3%]), seizure (nine [2%] vs eight [2%]), and headache (six [2%] vs ten [3%]). Serious adverse events included seizure (18 [5%] vs 22 [6%]) and brain oedema (seven [2%] vs 12 [3%]). 16 deaths in the study were caused by adverse events (nine [4%] in the rindopepimut group and seven [3%] in the control group), of which one-a pulmonary embolism in a 64-year-old male patient after 11 months of treatment-was assessed as potentially related to rindopepimut. INTERPRETATION: Rindopepimut did not increase survival in patients with newly diagnosed glioblastoma. Combination approaches potentially including rindopepimut might be required to show efficacy of immunotherapy in glioblastoma. FUNDING: Celldex Therapeutics, Inc.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Receptores ErbB/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/mortalidad , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/efectos adversos , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Dacarbazina/análogos & derivados , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Esquema de Medicación , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Humanos , Internacionalidad , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Selección de Paciente , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Temozolomida , Factores de Tiempo , Resultado del Tratamiento , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA