Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(9): 1470-1481, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37582359

RESUMEN

Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.


Asunto(s)
Luxación de la Cadera , Osteosclerosis , Tanquirasas , Humanos , Tanquirasas/genética , Tanquirasas/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Vía de Señalización Wnt/genética , Osteosclerosis/genética , beta Catenina/metabolismo
2.
Hum Genet ; 143(5): 683-694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38592547

RESUMEN

Generalized lipodystrophy is a feature of various hereditary disorders, often leading to a progeroid appearance. In the present study we identified a missense and a frameshift variant in a compound heterozygous state in SUPT7L in a boy with intrauterine growth retardation, generalized lipodystrophy, and additional progeroid features. SUPT7L encodes a component of the transcriptional coactivator complex STAGA. By transcriptome sequencing, we showed the predicted missense variant to cause aberrant splicing, leading to exon truncation and thereby to a complete absence of SUPT7L in dermal fibroblasts. In addition, we found altered expression of genes encoding DNA repair pathway components. This pathway was further investigated and an increased rate of DNA damage was detected in proband-derived fibroblasts and genome-edited HeLa cells. Finally, we performed transient overexpression of wildtype SUPT7L in both cellular systems, which normalizes the number of DNA damage events. Our findings suggest SUPT7L as a novel disease gene and underline the link between genome instability and progeroid phenotypes.


Asunto(s)
Retardo del Crecimiento Fetal , Lipodistrofia Generalizada Congénita , Factores de Transcripción , Humanos , Masculino , Daño del ADN , Reparación del ADN/genética , Retardo del Crecimiento Fetal/genética , Fibroblastos/metabolismo , Células HeLa , Lipodistrofia/genética , Lipodistrofia Generalizada Congénita/genética , Mutación con Pérdida de Función , Mutación Missense , Factores de Transcripción/genética
3.
Nucleic Acids Res ; 50(W1): W83-W89, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35489060

RESUMEN

With the shift from SNP arrays to high-throughput sequencing, most researchers studying diseases in consanguineous families do not rely on linkage analysis any longer, but simply search for deleterious variants which are homozygous in all patients. AutozygosityMapper allows the fast and convenient identification of disease mutations in patients from consanguineous pedigrees by focussing on homozygous segments shared by all patients. Users can upload multi-sample VCF files, including WGS data, without any pre-processing. Genome-wide runs of homozygosity and the underlying genotypes are presented in graphical interfaces. AutozygosityMapper extends the functions of its predecessor, HomozygosityMapper, to the search for autozygous regions, in which all patients share the same homozygous genotype. We provide export of VCF files containing only the variants found in homozygous regions, this usually reduces the number of variants by two orders of magnitude. These regions can also directly be analysed with our disease mutation identification tool MutationDistiller. The application comes with simple and intuitive graphical interfaces for data upload, analysis, and results. We kept the structure of HomozygosityMapper so that previous users will find it easy to switch. With AutozygosityMapper, we provide a fast web-based way to identify disease mutations in consanguineous families. AutozygosityMapper is freely available at https://www.genecascade.org/AutozygosityMapper/.


Asunto(s)
Consanguinidad , Análisis Mutacional de ADN , Humanos , Genotipo , Homocigoto , Mutación , Linaje , Polimorfismo de Nucleótido Simple , Análisis Mutacional de ADN/métodos
4.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33402532

RESUMEN

Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv341E mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv341E mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv341E-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor-related pathways in brain development.


Asunto(s)
Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Manosiltransferasas/metabolismo , Anomalías Múltiples/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Epilepsia/genética , Glicosilfosfatidilinositoles/deficiencia , Hipocampo/metabolismo , Discapacidad Intelectual/genética , Manosiltransferasas/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación , Mutación Missense , Fenotipo , Ingeniería de Proteínas/métodos , Convulsiones/genética , Convulsiones/fisiopatología
5.
Am J Hum Genet ; 106(6): 872-884, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32470376

RESUMEN

Genome-wide analysis methods, such as array comparative genomic hybridization (CGH) and whole-genome sequencing (WGS), have greatly advanced the identification of structural variants (SVs) in the human genome. However, even with standard high-throughput sequencing techniques, complex rearrangements with multiple breakpoints are often difficult to resolve, and predicting their effects on gene expression and phenotype remains a challenge. Here, we address these problems by using high-throughput chromosome conformation capture (Hi-C) generated from cultured cells of nine individuals with developmental disorders (DDs). Three individuals had previously been identified as harboring duplications at the SOX9 locus and six had been identified with translocations. Hi-C resolved the positions of the duplications and was instructive in interpreting their distinct pathogenic effects, including the formation of new topologically associating domains (neo-TADs). Hi-C was very sensitive in detecting translocations, and it revealed previously unrecognized complex rearrangements at the breakpoints. In several cases, we observed the formation of fused-TADs promoting ectopic enhancer-promoter interactions that were likely to be involved in the disease pathology. In summary, we show that Hi-C is a sensible method for the detection of complex SVs in a clinical setting. The results help interpret the possible pathogenic effects of the SVs in individuals with DDs.


Asunto(s)
Cromosomas Humanos/genética , Discapacidades del Desarrollo/genética , Genoma Humano/genética , Conformación Molecular , Translocación Genética/genética , Ensamble y Desensamble de Cromatina/genética , Puntos de Rotura del Cromosoma , Estudios de Cohortes , Humanos , Factor de Transcripción SOX9/genética , Duplicaciones Segmentarias en el Genoma/genética
6.
Bioinformatics ; 38(16): 3871-3876, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751599

RESUMEN

MOTIVATION: While the identification of small variants in panel sequencing data can be considered a solved problem, the identification of larger, multi-exon copy number variants (CNVs) still poses a considerable challenge. Thus, CNV calling has not been established in all laboratories performing panel sequencing. At the same time, such laboratories have accumulated large datasets and thus have the need to identify CNVs on their data to close the diagnostic gap. RESULTS: In this article, we present our method clearCNV that addresses this need in two ways. First, it helps laboratories to properly assign datasets to enrichment kits. Based on homogeneous subsets of data, clearCNV identifies CNVs affecting the targeted regions. Using real-world datasets and validation, we show that our method is highly competitive with previous methods and preferable in terms of specificity. AVAILABILITY AND IMPLEMENTATION: The software is available for free under a permissible license at https://github.com/bihealth/clear-cnv. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Variaciones en el Número de Copia de ADN , Programas Informáticos , Exones , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
7.
J Med Genet ; 59(7): 662-668, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34379057

RESUMEN

BACKGROUND: Genes implicated in the Golgi and endosomal trafficking machinery are crucial for brain development, and mutations in them are particularly associated with postnatal microcephaly (POM). METHODS: Exome sequencing was performed in three affected individuals from two unrelated consanguineous families presenting with delayed neurodevelopment, intellectual disability of variable degree, POM and failure to thrive. Patient-derived fibroblasts were tested for functional effects of the variants. RESULTS: We detected homozygous truncating variants in ATP9A. While the variant in family A is predicted to result in an early premature termination codon, the variant in family B affects a canonical splice site. Both variants lead to a substantial reduction of ATP9A mRNA expression. It has been shown previously that ATP9A localises to early and recycling endosomes, whereas its depletion leads to altered gene expression of components from this compartment. Consistent with previous findings, we also observed overexpression of ARPC3 and SNX3, genes strongly interacting with ATP9A. CONCLUSION: In aggregate, our findings show that pathogenic variants in ATP9A cause a novel autosomal recessive neurodevelopmental disorder with POM. While the physiological function of endogenous ATP9A is still largely elusive, our results underline a crucial role of this gene in endosomal transport in brain tissue.


Asunto(s)
Adenosina Trifosfatasas/genética , Discapacidad Intelectual , Proteínas de Transporte de Membrana/genética , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Insuficiencia de Crecimiento , Homocigoto , Humanos , Discapacidad Intelectual/genética , Microcefalia/patología , Trastornos del Neurodesarrollo/genética , Linaje
8.
Am J Hum Genet ; 105(3): 631-639, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31353024

RESUMEN

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.


Asunto(s)
Proteínas de Unión al Calcio/genética , Haploinsuficiencia , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Estudios de Cohortes , Femenino , Humanos , Ligandos , Masculino , Linaje , Secuenciación del Exoma
9.
Genet Med ; 24(10): 2187-2193, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35962790

RESUMEN

PURPOSE: We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. METHODS: Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. RESULTS: We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. CONCLUSION: In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome.


Asunto(s)
Artrogriposis , Contractura , Proteínas ADAMTS , Animales , Artrogriposis/genética , Consanguinidad , Contractura/genética , Homocigoto , Humanos , Ratones , Mutación , Linaje , Fenotipo
10.
Genet Med ; 24(9): 1927-1940, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35670808

RESUMEN

PURPOSE: In this study we aimed to identify the molecular genetic cause of a progressive multisystem disease with prominent lipodystrophy. METHODS: In total, 5 affected individuals were investigated using exome sequencing. Dermal fibroblasts were characterized using RNA sequencing, proteomics, immunoblotting, immunostaining, and electron microscopy. Subcellular localization and rescue studies were performed. RESULTS: We identified a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life (A1, A2, and A3), 2 are adults with normal intellectual development (A4 and A5). All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. The nucleotide substitution caused alternative splicing of BUD13 leading to a stable truncated protein whose expression positively correlated with disease expression and life expectancy. In dermal fibroblasts, we found elevated intron retention, a global reduction of spliceosomal proteins, and nuclei with multiple invaginations, which were more pronounced in A1, A2, and A3. Overexpression of both BUD13 isoforms normalized the nuclear morphology. CONCLUSION: Our results define a hitherto unknown syndrome and show that the alternative splice product converts a loss-of-function into a hypomorphic allele, thereby probably determining the severity of the disease and the survival of affected individuals.


Asunto(s)
Empalme Alternativo , Lipodistrofia , Proteínas de Unión al ARN/genética , Niño , Discapacidades del Desarrollo/genética , Humanos , Intrones , Lipodistrofia/genética , Empalme del ARN
11.
J Hum Genet ; 67(7): 405-410, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35095096

RESUMEN

Bilateral laryngeal abductor paralysis is a rare entity and the second most common cause of stridor in newborns. So far, no conclusive genetic or chromosomal aberration has been reported for X-linked isolated bilateral vocal cord paralysis, also referred to as Plott syndrome. Via whole genome sequencing (WGS), we identified a complex interchromosomal insertion in a large family with seven affected males. The 404 kb inserted fragment originates from chromosome 10q21.3, contains no genes and is inserted inversionally into the intergenic chromosomal region Xq27.1, 82 kb centromeric to the nearest gene SOX3. The patterns found at the breakpoint junctions resemble typical characteristics that arise in replication-based mechanisms with long-distance template switching. Non protein-coding insertions into the same genomic region have been described to result in different phenotypes, indicating that the phenotypic outcome likely depends on the introduction of regulatory elements. In conclusion, our data adds Plott syndrome as another entity, likely caused by the insertion of non-coding DNA into the intergenic chromosomal region Xq27.1. In this regard, we demonstrate the importance of WGS as a powerful diagnostic test in unsolved genetic diseases, as this genomic rearrangement has not been detected by current first-line diagnostic tests, i.e., exome sequencing and chromosomal microarray analysis.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Discapacidad Intelectual , Parálisis de los Pliegues Vocales , Aberraciones Cromosómicas , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Parálisis de los Pliegues Vocales/genética
12.
Nucleic Acids Res ; 48(W1): W162-W169, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32338743

RESUMEN

VarFish is a user-friendly web application for the quality control, filtering, prioritization, analysis, and user-based annotation of DNA variant data with a focus on rare disease genetics. It is capable of processing variant call files with single or multiple samples. The variants are automatically annotated with population frequencies, molecular impact, and presence in databases such as ClinVar. Further, it provides support for pathogenicity scores including CADD, MutationTaster, and phenotypic similarity scores. Users can filter variants based on these annotations and presumed inheritance pattern and sort the results by these scores. Variants passing the filter are listed with their annotations and many useful link-outs to genome browsers, other gene/variant data portals, and external tools for variant assessment. VarFish allows users to create their own annotations including support for variant assessment following ACMG-AMP guidelines. In close collaboration with medical practitioners, VarFish was designed for variant analysis and prioritization in diagnostic and research settings as described in the software's extensive manual. The user interface has been optimized for supporting these protocols. Users can install VarFish on their own in-house servers where it provides additional lab notebook features for collaborative analysis and allows re-analysis of cases, e.g. after update of genotype or phenotype databases.


Asunto(s)
Variación Genética , Enfermedades Raras/genética , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Enfermedades Raras/diagnóstico , Investigación , Interfaz Usuario-Computador
13.
Hum Genet ; 140(10): 1459-1469, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34436670

RESUMEN

During human organogenesis, lung development is a timely and tightly regulated developmental process under the control of a large number of signaling molecules. Understanding how genetic variants can disturb normal lung development causing different lung malformations is a major goal for dissecting molecular mechanisms during embryogenesis. Here, through exome sequencing (ES), array CGH, genome sequencing (GS) and Hi-C, we aimed at elucidating the molecular basis of bilateral isolated lung agenesis in three fetuses born to a non-consanguineous family. We detected a complex genomic rearrangement containing duplicated, triplicated and deleted fragments involving the SHH locus in fetuses presenting complete agenesis of both lungs and near-complete agenesis of the trachea, diagnosed by ultrasound screening and confirmed at autopsy following termination. The rearrangement did not include SHH itself, but several regulatory elements for lung development, such as MACS1, a major SHH lung enhancer, and the neighboring genes MNX1 and NOM1. The rearrangement incorporated parts of two topologically associating domains (TADs) including their boundaries. Hi-C of cells from one of the affected fetuses showed the formation of two novel TADs each containing SHH enhancers and the MNX1 and NOM1 genes. Hi-C together with GS indicate that the new 3D conformation is likely causative for this condition by an inappropriate activation of MNX1 included in the neo-TADs by MACS1 enhancer, further highlighting the importance of the 3D chromatin conformation in human disease.


Asunto(s)
Anomalías Múltiples/genética , Evolución Molecular , Enfermedades Pulmonares/genética , Pulmón/anomalías , Pulmón/crecimiento & desarrollo , Pulmón/ultraestructura , Organogénesis/genética , Adulto , Cadáver , Femenino , Feto , Variación Genética , Genoma Humano , Humanos , Masculino , Embarazo
14.
J Inherit Metab Dis ; 44(4): 972-986, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33320377

RESUMEN

Several inborn errors of metabolism show cutis laxa as a highly recognizable feature. One group of these metabolic cutis laxa conditions is autosomal recessive cutis laxa type 2 caused by defects in v-ATPase components or the mitochondrial proline cycle. Besides cutis laxa, muscular hypotonia and cardiac abnormalities are hallmarks of autosomal recessive cutis laxa type 2D (ARCL2D) due to pathogenic variants in ATP6V1A encoding subunit A of the v-ATPase. Here, we report on three affected individuals from two families with ARCL2D in whom we performed whole exome and Sanger sequencing. We performed functional studies in fibroblasts from one individual, summarized all known probands' clinical, molecular, and biochemical features and compared them, also to other metabolic forms of cutis laxa. We identified novel missense and the first nonsense variant strongly affecting ATP6V1A expression. All six ARCL2D affected individuals show equally severe cutis laxa and dysmorphism at birth. While for one no information was available, two died in infancy and three are now adolescents with mild or absent intellectual disability. Muscular weakness, ptosis, contractures, and elevated muscle enzymes indicated a persistent myopathy. In cellular studies, a fragmented Golgi compartment, a delayed Brefeldin A-induced retrograde transport and glycosylation abnormalities were present in fibroblasts from two individuals. This is the second and confirmatory report on pathogenic variants in ATP6V1A as the cause of this extremely rare condition and the first to describe a nonsense allele. Our data highlight the tremendous clinical variability of ATP6V1A related phenotypes even within the same family.


Asunto(s)
Cutis Laxo/genética , Mutación Missense , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Alelos , Estudios de Casos y Controles , Fibroblastos/metabolismo , Aparato de Golgi/metabolismo , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Linaje , Fenotipo
15.
Nucleic Acids Res ; 47(W1): W114-W120, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31106342

RESUMEN

MutationDistiller is a freely available online tool for user-driven analyses of Whole Exome Sequencing data. It offers a user-friendly interface aimed at clinicians and researchers, who are not necessarily bioinformaticians. MutationDistiller combines MutationTaster's pathogenicity predictions with a phenotype-based approach. Phenotypic information is not limited to symptoms included in the Human Phenotype Ontology (HPO), but may also comprise clinical diagnoses and the suspected mode of inheritance. The search can be restricted to lists of candidate genes (e.g. virtual gene panels) and by tissue-specific gene expression. The inclusion of GeneOntology (GO) and metabolic pathways facilitates the discovery of hitherto unknown disease genes. In a novel approach, we trained MutationDistiller's HPO-based prioritization on authentic genotype-phenotype sets obtained from ClinVar and found it to match or outcompete current prioritization tools in terms of accuracy. In the output, the program provides a list of potential disease mutations ordered by the likelihood of the affected genes to cause the phenotype. MutationDistiller provides links to gene-related information from various resources. It has been extensively tested by clinicians and their suggestions have been valued in many iterative cycles of revisions. The tool, a comprehensive documentation and examples are freely available at https://www.mutationdistiller.org/.


Asunto(s)
ADN/genética , Enfermedades Genéticas Congénitas/genética , Variación Genética/genética , Programas Informáticos , Bases de Datos Genéticas , Exoma/genética , Humanos , Mutación/genética , Fenotipo , Interfaz Usuario-Computador , Secuenciación del Exoma
16.
Am J Hum Genet ; 101(5): 833-843, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100093

RESUMEN

Gorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.650G>A (p.Arg217His) and c.649C>T (p.Arg217Cys) in SLC25A24 in five unrelated girls diagnosed with GCMS. Two of the girls had pronounced neonatal progeroid features and were initially diagnosed with Wiedemann-Rautenstrauch syndrome. SLC25A24 encodes a mitochondrial inner membrane ATP-Mg/Pi carrier. In fibroblasts from affected individuals, the mutated SLC25A24 showed normal stability. In contrast to control cells, the probands' cells showed mitochondrial swelling, which was exacerbated upon treatment with hydrogen peroxide (H2O2). The same effect was observed after overexpression of the mutant cDNA. Under normal culture conditions, the mitochondrial membrane potential of the probands' fibroblasts was intact, whereas ATP content in the mitochondrial matrix was lower than that in control cells. However, upon H2O2 exposure, the membrane potential was significantly elevated in cells harboring the mutated SLC25A24. No reduction of mitochondrial DNA copy number was observed. These findings demonstrate that mitochondrial dysfunction with increased sensitivity to oxidative stress is due to the SLC25A24 mutations. Our results suggest that the SLC25A24 mutations induce a gain of pathological function and link mitochondrial ATP-Mg/Pi transport to the development of skeletal and connective tissue.


Asunto(s)
Anomalías Múltiples/genética , Antiportadores/genética , Proteínas de Unión al Calcio/genética , Anomalías Craneofaciales/genética , Craneosinostosis/genética , Conducto Arterioso Permeable/genética , Hipertricosis/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación/genética , Adenosina Trifosfato/genética , Adolescente , Niño , Preescolar , Cutis Laxo/genética , ADN Mitocondrial/genética , Exoma/genética , Femenino , Retardo del Crecimiento Fetal/genética , Fibroblastos/patología , Trastornos del Crecimiento , Humanos , Peróxido de Hidrógeno/farmacología , Lactante , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/genética , Progeria/genética
17.
Am J Hum Genet ; 100(2): 216-227, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28065471

RESUMEN

Defects of the V-type proton (H+) ATPase (V-ATPase) impair acidification and intracellular trafficking of membrane-enclosed compartments, including secretory granules, endosomes, and lysosomes. Whole-exome sequencing in five families affected by mild to severe cutis laxa, dysmorphic facial features, and cardiopulmonary involvement identified biallelic missense mutations in ATP6V1E1 and ATP6V1A, which encode the E1 and A subunits, respectively, of the V1 domain of the heteromultimeric V-ATPase complex. Structural modeling indicated that all substitutions affect critical residues and inter- or intrasubunit interactions. Furthermore, complexome profiling, a method combining blue-native gel electrophoresis and liquid chromatography tandem mass spectrometry, showed that they disturb either the assembly or the stability of the V-ATPase complex. Protein glycosylation was variably affected. Abnormal vesicular trafficking was evidenced by delayed retrograde transport after brefeldin A treatment and abnormal swelling and fragmentation of the Golgi apparatus. In addition to showing reduced and fragmented elastic fibers, the histopathological hallmark of cutis laxa, transmission electron microscopy of the dermis also showed pronounced changes in the structure and organization of the collagen fibers. Our findings expand the clinical and molecular spectrum of metabolic cutis laxa syndromes and further link defective extracellular matrix assembly to faulty protein processing and cellular trafficking caused by genetic defects in the V-ATPase complex.


Asunto(s)
Cutis Laxo/genética , Mutación Missense , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Alelos , Secuencia de Aminoácidos , Estudios de Casos y Controles , Niño , Femenino , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Conformación Proteica , Transporte de Proteínas , Espectrometría de Masas en Tándem
19.
Genet Med ; 21(12): 2807-2814, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31164752

RESUMEN

PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.


Asunto(s)
Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Bases de Datos Genéticas , Aprendizaje Profundo , Exoma/genética , Femenino , Genómica , Humanos , Masculino , Fenotipo , Programas Informáticos
20.
J Hum Genet ; 64(7): 609-616, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31015584

RESUMEN

Individuals affected with autosomal recessive cutis laxa type 2B and 3 usually show translucent skin with visible veins and abnormal elastic fibers, intrauterine and/or postnatal growth restriction and a typical triangular facial gestalt. Here we describe three unrelated individuals in whom such a cutis laxa syndrome was suspected, especially after electron microscopy revealed immature and less dense dermal elastic fibers in one of them. However, one of these children also displayed optic atrophy and two hypogammaglobulinemia. All had elevated liver enzymes and acute liver failure during febrile episodes leading to early demise in two of them. The only surviving patient had been treated with immunoglobulins. Through exome sequencing we identified mutations in NBAS, coding for a protein involved in Golgi-to-ER transport. NBAS deficiency causes several rare conditions ranging from isolated recurrent acute liver failure to a multisystem disorder mainly characterized by short stature, optic nerve atrophy and Pelger-Huët anomaly (SOPH). Since we subsequently verified Pelger-Huët anomaly in two of the patients the diagnosis SOPH syndrome was unequivocally proven. Our data show that SOPH syndrome can be regarded as a differential diagnosis for the progeroid forms of cutis laxa in early infancy and that possibly treatment of the hypogammaglobulinemia can be of high relevance for the prognosis.


Asunto(s)
Trastornos del Crecimiento/diagnóstico , Proteínas de Neoplasias/genética , Enfermedades del Nervio Óptico/diagnóstico , Anomalía de Pelger-Huët/diagnóstico , Agammaglobulinemia/sangre , Agammaglobulinemia/fisiopatología , Cutis Laxo/diagnóstico , Cutis Laxo/genética , Cutis Laxo/patología , Diagnóstico Diferencial , Tejido Elástico/ultraestructura , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Humanos , Lactante , Hígado/enzimología , Hígado/patología , Masculino , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/patología , Anomalía de Pelger-Huët/genética , Anomalía de Pelger-Huët/patología , Progeria/diagnóstico , Progeria/genética , Piel/patología , Síndrome , Secuenciación del Exoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA