Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Mol Cell Cardiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059462

RESUMEN

Missense mutations in cardiac myosin binding protein C (cMyBP-C) are known to cause hypertrophic cardiomyopathy (HCM). The W792R mutation in the C6 domain of cMyBP-C causes severe, early onset HCM in humans, yet its impact on the function of cMyBP-C and the mechanism through which it causes disease remain unknown. To fully characterize the effect of the W792R mutation on cardiac morphology and function in vivo, we generated a murine knock-in model. We crossed heterozygous W792RWR mice to produce homozygous mutant W792RRR, heterozygous W792RWR, and control W792RWW mice. W792RRR mice present with cardiac hypertrophy, myofibrillar disarray and fibrosis by postnatal day 10 (PND10), and do not survive past PND21. Full-length cMyBP-C is present at similar levels in W792RWW, W792RWR and W792RRR mice and is properly incorporated into the sarcomere. Heterozygous W792RWR mice displayed normal heart morphology and contractility. Permeabilized myocardium from PND10 W792RRR mice showed increased Ca2+ sensitivity, accelerated cross-bridge cycling kinetics, decreased cooperativity in the activation of force, and increased expression of hypertrophy-related genes. In silico modeling suggests that the W792R mutation destabilizes the fold of the C6 domain and increases torsion in the C5-C7 region, possibly impacting regulatory interactions of cMyBP-C with myosin and actin. Based on the data presented here, we propose a model in which mutant W792R cMyBP-C preferentially forms Ca2+ sensitizing interactions with actin, rather than inhibitory interactions with myosin. The W792R-cMyBP-C mouse model provides mechanistic insights into the pathology of this mutation and may provide a mechanism by which other central domain missense mutations in cMyBP-C may alter contractility, leading to HCM.

2.
Circ Res ; 116(1): 183-92, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25552695

RESUMEN

Cardiac myosin-binding protein-C (cMyBP-C) is a thick filament-associated protein that seems to contribute to the regulation of cardiac contraction through interactions with either myosin or actin or both. Several studies over the past several years have suggested that the interactions of cardiac myosin-binding protein-C with its binding partners vary with its phosphorylation state, binding predominantly to myosin when dephosphorylated and to actin when it is phosphorylated by protein kinase A or other kinases. Here, we summarize evidence suggesting that phosphorylation of cardiac myosin binding protein-C is a key regulator of the kinetics and amplitude of cardiac contraction during ß-adrenergic stimulation and increased stimulus frequency. We propose a model for these effects via a phosphorylation-dependent regulation of the kinetics and extent of cooperative recruitment of cross bridges to the thin filament: phosphorylation of cardiac myosin binding protein-C accelerates cross bridge binding to actin, thereby accelerating recruitment and increasing the amplitude of the cardiac twitch. In contrast, enhanced lusitropy as a result of phosphorylation seems to be caused by a direct effect of phosphorylation to accelerate cross-bridge detachment rate. Depression or elimination of one or both of these processes in a disease, such as end-stage heart failure, seems to contribute to the systolic and diastolic dysfunction that characterizes the disease.


Asunto(s)
Proteínas Portadoras/fisiología , Contracción Miocárdica/fisiología , Miocardio/ultraestructura , Animales , Humanos , Miocardio/citología
3.
Circulation ; 126(10): 1194-205, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22829020

RESUMEN

BACKGROUND: Cardiac myosin-binding protein C (cMyBP-C) is a sarcomeric protein that dynamically regulates thick-filament structure and function. In constitutive cMyBP-C knockout (cMyBP-C(-/-)) mice, loss of cMyBP-C has been linked to left ventricular dilation, cardiac hypertrophy, and systolic and diastolic dysfunction, although the pathogenesis of these phenotypes remains unclear. METHODS AND RESULTS: We generated cMyBP-C conditional knockout (cMyBP-C-cKO) mice expressing floxed cMyBP-C alleles and a tamoxifen-inducible Cre-recombinase fused to 2 mutated estrogen receptors to study the onset and progression of structural and functional phenotypes caused by the loss of cMyBP-C. In adult cMyBP-C-cKO mice, knockdown of cMyBP-C over a 2-month period resulted in a corresponding impairment of diastolic function and a concomitant abbreviation of systolic ejection, although contractile function was largely preserved. No significant changes in cardiac structure or morphology were immediately evident; however, mild hypertrophy developed after near-complete knockdown of cMyBP-C. In response to pressure overload induced by transaortic constriction, cMyBP-C-cKO mice treated with tamoxifen also developed greater cardiac hypertrophy, left ventricular dilation, and reduced contractile function. CONCLUSIONS: These results indicate that myocardial dysfunction is largely caused by the removal of cMyBP-C and occurs before the onset of cytoarchitectural remodeling in tamoxifen-treated cMyBP-C-cKO myocardium. Moreover, near ablation of cMyBP-C in adult myocardium primarily leads to the development of hypertrophic cardiomyopathy in contrast to the dilated phenotype evident in cMyBP-C(-/-) mice, which highlights the importance of additional factors such as loading stress in determining the expression and progression of cMyBP-C-associated cardiomyopathy.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Contracción Miocárdica/genética , Factores de Edad , Animales , Antineoplásicos Hormonales/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Integrasas/genética , Masculino , Ratones , Ratones Noqueados , Contracción Miocárdica/fisiología , Fenotipo , Tamoxifeno/farmacología , Función Ventricular Izquierda/genética , Función Ventricular Izquierda/fisiología , Presión Ventricular/genética , Presión Ventricular/fisiología , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
4.
J Gen Physiol ; 155(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36715675

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the leading genetic cause of heart disease. The heart comprises several proteins that work together to properly facilitate force production and pump blood throughout the body. Cardiac myosin binding protein-C (cMyBP-C) is a thick-filament protein, and mutations in cMyBP-C are frequently linked with clinical cases of HCM. Within the sarcomere, the N-terminus of cMyBP-C likely interacts with the myosin regulatory light chain (RLC); RLC is a subunit of myosin located within the myosin neck region that modulates contractile dynamics via its phosphorylation state. Phosphorylation of RLC is thought to influence myosin head position along the thick-filament backbone, making it more favorable to bind the thin filament of actin and facilitate force production. However, little is known about how these two proteins interact. We tested the effects of RLC phosphorylation on Ca2+-regulated contractility using biomechanical assays on skinned papillary muscle strips isolated from cMyBP-C KO mice and WT mice. RLC phosphorylation increased Ca2+ sensitivity of contraction (i.e., pCa50) from 5.80 ± 0.02 to 5.95 ± 0.03 in WT strips, whereas RLC phosphorylation increased Ca2+ sensitivity of contraction from 5.86 ± 0.02 to 6.15 ± 0.03 in cMyBP-C KO strips. These data suggest that the effects of RLC phosphorylation on Ca2+ sensitivity of contraction are amplified when cMyBP-C is absent from the sarcomere. This implies that cMyBP-C and RLC act in concert to regulate contractility in healthy hearts, and mutations to these proteins that lead to HCM (or a loss of phosphorylation with disease progression) may disrupt important interactions between these thick-filament regulatory proteins.


Asunto(s)
Calcio , Cardiomiopatía Hipertrófica , Ratones , Animales , Fosforilación/fisiología , Calcio/metabolismo , Ratones Noqueados , Miocardio/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Cardiomiopatía Hipertrófica/genética , Contracción Miocárdica/fisiología
5.
J Gen Physiol ; 155(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37725091

RESUMEN

Ca2+ binding to troponin C (TnC) and myosin cross-bridge binding to actin act in a synergistic cooperative manner to modulate myocardial contraction and relaxation. The responsiveness of the myocardial thin filament to the activating effects of Ca2+ and myosin cross-bridge binding has been well-characterized in small mammals (e.g., mice). Given the nearly 10-fold difference in resting heart rates and twitch kinetics between small and large mammals, it is unlikely that the cooperative mechanisms underlying thin filament activation are identical in these two species. To test this idea, we measured the Ca2+ dependencies of steady-state force and the rate constant of force redevelopment (ktr) in murine and porcine permeabilized ventricular myocardium. While murine myocardium exhibited a steep activation-dependence of ktr, the activation-dependent profile of ktr was significantly reduced in porcine ventricular myocardium. Further insight was attained by examining force-pCa and ktr-pCa relationships. In the murine myocardium, the pCa50 for ktr was right-shifted compared with the pCa50 for force, meaning that increases in steady-state force occurred well before increases in the rate of force redevelopment were observed. In the porcine myocardium, we observed a tighter coupling of the force-pCa and ktr-pCa relationships, as evidenced by near-maximal rates of force redevelopment at low levels of Ca2+ activation. These results demonstrate that the molecular mechanisms underlying the cooperative activation of force are a dynamic property of the mammalian heart, involving, at least in part, the species- and tissue-specific expression of cardiac myosin heavy chain isoforms.


Asunto(s)
Calcio , Miocardio , Porcinos , Animales , Ratones , Mamíferos , Contracción Muscular , Cadenas Pesadas de Miosina
6.
J Mol Cell Cardiol ; 53(5): 609-16, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22850286

RESUMEN

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a regulator of pump function in healthy hearts. However, the mechanisms of regulation by cAMP-dependent protein kinase (PKA)-mediated cMyBP-C phosphorylation have not been completely dissociated from other myofilament substrates for PKA, especially cardiac troponin I (cTnI). We have used synchrotron X-ray diffraction in skinned trabeculae to elucidate the roles of cMyBP-C and cTnI phosphorylation in myocardial inotropy and lusitropy. Myocardium in this study was isolated from four transgenic mouse lines in which the phosphorylation state of either cMyBP-C or cTnI was constitutively altered by site-specific mutagenesis. Analysis of peak intensities in X-ray diffraction patterns from trabeculae showed that cross-bridges are displaced similarly from the thick filament and toward actin (1) when both cMyBP-C and cTnI are phosphorylated, (2) when only cMyBP-C is phosphorylated, and (3) when cMyBP-C phosphorylation is mimicked by replacement with negative charge in its PKA sites. These findings suggest that phosphorylation of cMyBP-C relieves a constraint on cross-bridges, thereby increasing the proximity of myosin to binding sites on actin. Measurements of Ca(2+)-activated force in myocardium defined distinct molecular effects due to phosphorylation of cMyBP-C or co-phosphorylation with cTnI. Echocardiography revealed that mimicking the charge of cMyBP-C phosphorylation protects hearts from hypertrophy and systolic dysfunction that develops with constitutive dephosphorylation or genetic ablation, underscoring the importance of cMyBP-C phosphorylation for proper pump function.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Miocardio/enzimología , Procesamiento Proteico-Postraduccional , Troponina I/metabolismo , Citoesqueleto de Actina/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas Portadoras/genética , Ventrículos Cardíacos/diagnóstico por imagen , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Fosforilación , Volumen Sistólico , Troponina I/genética , Ultrasonografía , Función Ventricular Izquierda , Difracción de Rayos X
7.
Dev Cell ; 11(3): 387-97, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16950128

RESUMEN

Nonmuscle gamma(cyto)-actin is expressed at very low levels in skeletal muscle but uniquely localizes to costameres, the cytoskeletal networks that couple peripheral myofibrils to the sarcolemma. We generated and analyzed skeletal muscle-specific gamma(cyto)-actin knockout (Actg1-msKO) mice. Although muscle development proceeded normally, Actg1-msKO mice presented with overt muscle weakness accompanied by a progressive pattern of muscle fiber necrosis/regeneration. Functional deficits in whole-body tension and isometric twitch force were observed, consistent with defects in the connectivity between muscle fibers and/or myofibrils or at the myotendinous junctions. Surprisingly, gamma(cyto)-actin-deficient muscle did not demonstrate the fibrosis, inflammation, and membrane damage typical of several muscular dystrophies but rather presented with a novel progressive myopathy. Together, our data demonstrate an important role for minimally abundant but strategically localized gamma(cyto)-actin in adult skeletal muscle and describe a new mouse model to study the in vivo relevance of subcellular actin isoform sorting.


Asunto(s)
Actinas/genética , Actinas/fisiología , Citoplasma/metabolismo , Músculo Esquelético/embriología , Enfermedades Musculares/metabolismo , Animales , Membrana Celular/metabolismo , Distrofina/metabolismo , Glicoproteínas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Músculo Esquelético/metabolismo , Enfermedades Musculares/patología , Organogénesis
8.
J Gen Physiol ; 153(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566084

RESUMEN

In myocardium, phosphorylation of cardiac myosin-binding protein-C (cMyBP-C) is thought to modulate the cooperative activation of the thin filament by binding to myosin and/or actin, thereby regulating the probability of cross-bridge binding to actin. At low levels of Ca2+ activation, unloaded shortening velocity (Vo) in permeabilized cardiac muscle is comprised of an initial high-velocity phase and a subsequent low-velocity phase. The velocities in these phases scale with the level of activation, culminating in a single high-velocity phase (Vmax) at saturating Ca2+. To test the idea that cMyBP-C phosphorylation contributes to the activation dependence of Vo, we measured Vo before and following treatment with protein kinase A (PKA) in skinned trabecula isolated from mice expressing either wild-type cMyBP-C (tWT), nonphosphorylatable cMyBP-C (t3SA), or phosphomimetic cMyBP-C (t3SD). During maximal Ca2+ activation, Vmax was monophasic and not significantly different between the three groups. Although biphasic shortening was observed in all three groups at half-maximal activation under control conditions, the high- and low-velocity phases were faster in the t3SD myocardium compared with values obtained in either tWT or t3SA myocardium. Treatment with PKA significantly accelerated both the high- and low-velocity phases in tWT myocardium but had no effect on Vo in either the t3SD or t3SA myocardium. These results can be explained in terms of a model in which the level of cMyBP-C phosphorylation modulates the extent and rate of cooperative spread of myosin binding to actin.


Asunto(s)
Proteínas Portadoras , Contracción Miocárdica , Animales , Proteínas Portadoras/metabolismo , Ratones , Ratones Noqueados , Miocardio/metabolismo , Fosforilación
9.
J Gen Physiol ; 153(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33646280

RESUMEN

The Frank-Starling relationship establishes that elevated end-diastolic volume progressively increases ventricular pressure and stroke volume in healthy hearts. The relationship is modulated by a number of physiological inputs and is often depressed in human heart failure. Emerging evidence suggests that cardiac myosin-binding protein-C (cMyBP-C) contributes to the Frank-Starling relationship. We measured contractile properties at multiple levels of structural organization to determine the role of cMyBP-C and its phosphorylation in regulating (1) the sarcomere length dependence of power in cardiac myofilaments and (2) the Frank-Starling relationship in vivo. We compared transgenic mice expressing wild-type cMyBP-C on the null background, which have ∼50% phosphorylated cMyBP-C (Controls), to transgenic mice lacking cMyBP-C (KO) and to mice expressing cMyBP-C that have serine-273, -282, and -302 mutated to aspartate (cMyBP-C t3SD) or alanine (cMyBP-C t3SA) on the null background to mimic either constitutive PKA phosphorylation or nonphosphorylated cMyBP-C, respectively. We observed a continuum of length dependence of power output in myocyte preparations. Sarcomere length dependence of power progressively increased with a rank ordering of cMyBP-C KO = cMyBP-C t3SA < Control < cMyBP-C t3SD. Length dependence of myofilament power translated, at least in part, to hearts, whereby Frank-Starling relationships were steepest in cMyBP-C t3SD mice. The results support the hypothesis that cMyBP-C and its phosphorylation state tune sarcomere length dependence of myofibrillar power, and these regulatory processes translate across spatial levels of myocardial organization to control beat-to-beat ventricular performance.


Asunto(s)
Estorninos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Ratones Transgénicos , Contracción Miocárdica , Miocardio/metabolismo , Fosforilación , Sarcómeros/metabolismo , Estorninos/metabolismo
10.
J Physiol ; 588(Pt 6): 981-93, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20123786

RESUMEN

Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca(2+) sensitivity of force (pCa(50)), PKA treatment has been shown to decrease pCa(50), presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca(2+)-independent force and maximum Ca(2+)-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I(1,1)/I(1,0)) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d(1,0)) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I(1,1)/I(1,0) and, as hypothesized, treatment with MLCK also increased I(1,1)/I(1,0), which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by 2 nm (3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca(2+) sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.


Asunto(s)
Proteínas Portadoras/fisiología , Contracción Miocárdica/fisiología , Cadenas Ligeras de Miosina/fisiología , Función Ventricular Derecha/fisiología , Animales , Calcio/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos , Modelos Animales , Contracción Miocárdica/efectos de los fármacos , Quinasa de Cadena Ligera de Miosina/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Función Ventricular Derecha/efectos de los fármacos
11.
FASEB J ; 23(7): 2205-14, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19279140

RESUMEN

We generated transgenic mice that overexpressed gamma-(cyto) actin 2000-fold above wild-type levels in skeletal muscle. gamma-(cyto) actin comprised 40% of total actin in transgenic skeletal muscle, with a concomitant 40% decrease in alpha-actin. Surprisingly, transgenic muscle was histologically and ultrastructurally identical to wild-type muscle despite near-stoichiometric incorporation of gamma-(cyto) actin into sarcomeric thin filaments. Furthermore, several parameters of muscle physiological performance in the transgenic animals were not different from wild type. Given these surprising results, we tested whether overexpression of gamma-(cyto) actin could rescue the early postnatal lethality in alpha-(sk) actin-null mice (Acta1(-/-)). By quantitative Western blot analysis, we found total actin levels were decreased by 35% in Acta1(-/-) muscle. Although transgenic overexpression of gamma-(cyto) actin on the Acta1(-/-) background restored total actin levels to wild type, resulting in thin filaments composed of 60% gamma-(cyto) actin and a 40% mixture of cardiac and vascular actin, the life span of transgenic Acta1(-/-) mice was not extended. These results indicate that sarcomeric thin filaments can accommodate substantial incorporation of gamma-(cyto) actin without functional consequences, yet gamma-(cyto) actin cannot fully substitute for alpha-(sk) actin.


Asunto(s)
Actinas/genética , Músculo Esquelético/química , Actinas/análisis , Animales , Citoplasma/química , Endotelio Vascular/química , Longevidad , Ratones , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/ultraestructura , Miocardio/química , Sarcómeros/química , Sarcómeros/ultraestructura
12.
Circ Res ; 103(3): 244-51, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18599866

RESUMEN

Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I(11)/I(10), in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C(-/-)) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I(11)/I(10) (0.22+/-0.03 versus 0.33+/-0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I(11)/I(10) between untreated and PKA-treated cMyBP-C(-/-) myocardium (0.40+/-0.06 versus 0.42+/-0.05). Although lattice spacing did not change after treatment in wild-type (45.68+/-0.84 nm versus 45.64+/-0.64 nm), treatment of cMyBP-C(-/-) myocardium increased lattice spacing (46.80+/-0.92 nm versus 49.61+/-0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocardio/metabolismo , Miosinas/metabolismo , Animales , Proteínas Portadoras/fisiología , Corazón/fisiología , Cinética , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Contracción Miocárdica , Fosforilación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
13.
J Gen Physiol ; 151(5): 670-679, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30642915

RESUMEN

Enigma Homologue (ENH) is a component of the Z-disc, a structure that anchors actin filaments in the contractile unit of muscle, the sarcomere. Cardiac-specific ablation of ENH protein expression causes contractile dysfunction that ultimately culminates in dilated cardiomyopathy. However, whether ENH is involved in the regulation of myocardial contractility is unknown. To determine if ENH is required for the mechanical activity of cardiac muscle, we analyze muscle mechanics of isolated trabeculae from the hearts of ENH +/+ and ENH -/- mice. We detected no differences in steady-state mechanical properties but show that when muscle fibers are allowed to relax and then are restretched, the rate at which tension redevelops is depressed in ENH -/- mouse myocardium relative to that in ENH +/+ myocardium. SDS-PAGE analysis demonstrated that the expression of ß-myosin heavy chain is increased in ENH -/- mouse myocardium, which could partially, but not completely, account for the depression in tension redevelopment kinetics. Using top-down proteomics analysis, we found that the expression of other thin/thick filament regulatory proteins is unaltered, although the phosphorylation of a cardiac troponin T isoform, cardiac troponin I, and myosin regulatory light chain is decreased in ENH -/- mouse myocardium. Nevertheless, these alterations are very small and thus insufficient to explain slowed tension redevelopment kinetics in ENH -/- mouse myocardium. These data suggest that the ENH protein influences tension redevelopment kinetics in mouse myocardium, possibly by affecting cross-bridge cycling kinetics. Previous studies also indicate that ablation of specific Z-disc proteins in myocardium slows contraction kinetics, which could also be a contributing factor in this study.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Miocardio/metabolismo , Sarcómeros/metabolismo , Animales , Cardiomiopatía Dilatada/metabolismo , Femenino , Cinética , Masculino , Ratones , Contracción Miocárdica/fisiología , Cadenas Pesadas de Miosina/metabolismo , Fosforilación/fisiología , Isoformas de Proteínas/metabolismo , Troponina T/metabolismo
14.
J Mol Cell Cardiol ; 44(6): 983-991, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18387630

RESUMEN

Titin is a very large alternatively spliced protein that performs multiple functions in heart and skeletal muscles. A rat strain is described with an autosomal dominant mutation that alters the isoform expression of titin. While wild type animals go through a developmental program where the 3.0 MDa N2B becomes the major isoform expressed by two to three weeks after birth (approximately 85%), the appearance of the N2B is markedly delayed in heterozygotes and never reaches more than 50% of the titin in the adult. Homozygote mutants express a giant titin of the N2BA isoform type (3.9 MDa) that persists as the primary titin species through ages of more than one and a half years. The mutation does not affect the isoform switching of troponin T, a protein that is also alternatively spliced with developmental changes. The basis for the apparently greater size of the giant titin in homozygous mutants was not determined, but the additional length was not due to inclusion of sequence from larger numbers of PEVK exons or the Novex III exon. Passive tension measurements using isolated cardiomyocytes from homozygous mutants showed that cells could be stretched to sarcomere lengths greater than 4 mum without breakage. This novel rat model should be useful for exploring the potential role of titin in the Frank-Starling relationship and mechano-sensing/signaling mechanisms.


Asunto(s)
Empalme Alternativo/genética , Exones/genética , Proteínas Musculares/biosíntesis , Mutación , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Conectina , Corazón/crecimiento & desarrollo , Homocigoto , Mecanotransducción Celular/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Ratas , Ratas Endogámicas F344 , Ratas Mutantes , Ratas Sprague-Dawley , Sarcómeros/genética , Sarcómeros/metabolismo , Troponina T/biosíntesis , Troponina T/genética
15.
J Mol Biol ; 367(1): 36-41, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17254601

RESUMEN

Myosin binding protein-C (cMyBP-C) is a thick filament accessory protein, which in cardiac muscle functions to regulate the kinetics of cross-bridge interaction with actin; however, the underlying mechanism is not yet understood. To explore the structural basis for cMyBP-C function, we used synchrotron low-angle X-ray diffraction to measure interfilament lattice spacing and the equatorial intensity ratio, I(11)/I(10), in skinned myocardial preparations isolated from wild-type (WT) and cMyBP-C null (cMyBP-C(-/-)). In relaxed myocardium, ablation of cMyBP-C appeared to result in radial displacement of cross-bridges away from the thick filaments, as there was a significant increase ( approximately 30%) in the I(11)/I(10) ratio for cMyBP-C(-/-) (0.37+/-0.03) myocardium as compared to WT (0.28+/-0.01). While lattice spacing tended to be greater in cMyBP-C(-/-) myocardium (44.18+/-0.68 nm) when compared to WT (42.95+/-0.43 nm), the difference was not statistically significant. Furthermore, liquid-like disorder in the myofilament lattice was significantly greater ( approximately 40% greater) in cMyBP-C(-/-) myocardium as compared to WT. These results are consistent with our working hypothesis that cMyBP-C normally acts to tether myosin cross-bridges nearer to the thick filament backbone, thereby reducing the likelihood of cross-bridge binding to actin and limiting cooperative activation of the thin filament.


Asunto(s)
Proteínas Portadoras/química , Miocardio/química , Miosinas/química , Citoesqueleto de Actina , Animales , Ablación por Catéter , Disulfuros/química , Femenino , Masculino , Ratones , Conformación Proteica , Difracción de Rayos X
16.
J Gen Physiol ; 127(2): 95-107, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16446502

RESUMEN

Recent evidence suggests that ventricular ejection is partly powered by a delayed development of force, i.e., stretch activation, in regions of the ventricular wall due to stretch resulting from torsional twist of the ventricle around the apex-to-base axis. Given the potential importance of stretch activation in cardiac function, we characterized the stretch activation response and its Ca2+ dependence in murine skinned myocardium at 22 degrees C in solutions of varying Ca2+ concentrations. Stretch activation was induced by suddenly imposing a stretch of 0.5-2.5% of initial length to the isometrically contracting muscle and then holding the muscle at the new length. The force response to stretch was multiphasic: force initially increased in proportion to the amount of stretch, reached a peak, and then declined to a minimum before redeveloping to a new steady level. This last phase of the response is the delayed force characteristic of myocardial stretch activation and is presumably due to increased attachment of cross-bridges as a consequence of stretch. The amplitude and rate of stretch activation varied with Ca2+ concentration and more specifically with the level of isometric force prior to the stretch. Since myocardial force is regulated both by Ca2+ binding to troponin-C and cross-bridge binding to thin filaments, we explored the role of cross-bridge binding in the stretch activation response using NEM-S1, a strong-binding, non-force-generating derivative of myosin subfragment 1. NEM-S1 treatment at submaximal Ca2+-activated isometric forces significantly accelerated the rate of the stretch activation response and reduced its amplitude. These data show that the rate and amplitude of myocardial stretch activation vary with the level of activation and that stretch activation involves cooperative binding of cross-bridges to the thin filament. Such a mechanism would contribute to increased systolic ejection in response to increased delivery of activator Ca2+ during excitation-contraction coupling.


Asunto(s)
Calcio/fisiología , Corazón/fisiología , Husos Musculares/fisiología , Contracción Miocárdica/fisiología , Función Ventricular/fisiología , Citoesqueleto de Actina/fisiología , Animales , Frecuencia Cardíaca/fisiología , Matemática , Ratones , Modelos Cardiovasculares , Husos Musculares/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Subfragmentos de Miosina/farmacología , Miosinas/fisiología , Troponina C/fisiología , Función Ventricular/efectos de los fármacos
17.
Circ Res ; 94(10): 1290-300, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15166116

RESUMEN

At the level of the myofibrillar proteins, activation of myocardial contraction is thought to involve switch-like regulation of crossbridge binding to the thin filaments. A central feature of this view of regulation is that Ca2+ binding to the low-affinity (approximately 3 micromol/L) site on troponin C alters the interactions of proteins in the thin filament regulatory strand, which leads to movement of tropomyosin from its blocking position on the thin filament and binding of crossbridges to actin. Although Ca2+ binding is a critical step in initiating contraction, this event alone does not account for the activation dependence of contractile properties of myocardium. Instead, activation is a highly cooperative process in which initial crossbridge binding to the thin filaments recruits additional crossbridge binding to actin as well as increased Ca2+ binding to troponin C. This review addresses possible roles of thin filament cooperativity in myocardium as a process that modulates the activation dependence of force and the rate of force development and also possible mechanisms by which cooperative signals are transmitted along the thick filament. Emerging evidence suggests that such mechanisms could contribute to the regulation of fundamental mechanical properties of myocardium and alterations in regulation that underlie contractile disorders in diseases such as cardiomyopathies.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Contracción Miocárdica , Miosinas/metabolismo , Animales , Calcio/metabolismo , Cardiopatías/etiología , Humanos , Cinética , Miocardio/metabolismo , Ratas
18.
Circ Heart Fail ; 8(3): 582-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740839

RESUMEN

BACKGROUND: Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for ≈50% of all cases of HF and currently has no effective treatment. Diastolic dysfunction underlies HFpEF; therefore, elucidation of the mechanisms that mediate relaxation can provide new potential targets for treatment. Cardiac myosin-binding protein-C (cMyBP-C) is a thick filament protein that modulates cross-bridge cycling rates via alterations in its phosphorylation status. Thus, we hypothesize that phosphorylated cMyBP-C accelerates the rate of cross-bridge detachment, thereby enhancing relaxation to mediate diastolic function. METHODS AND RESULTS: We compared mouse models expressing phosphorylation-deficient cMyBP-C(S273A/S282A/S302A)-cMyBP-C(t3SA), phosphomimetic cMyBP-C(S273D/S282D/S302D)-cMyBP-C(t3SD), and wild-type-control cMyBP-C(tWT) to elucidate the functional effects of cMyBP-C phosphorylation. Decreased voluntary running distances, increased lung/body weight ratios, and increased brain natriuretic peptide levels in cMyBP-C(t3SA) mice demonstrate that phosphorylation deficiency is associated with signs of HF. Echocardiography (ejection fraction and myocardial relaxation velocity) and pressure/volume measurements (-dP/dtmin, pressure decay time constant τ-Glantz, and passive filling stiffness) show that cMyBP-C phosphorylation enhances myocardial relaxation in cMyBP-C(t3SD) mice, whereas deficient cMyBP-C phosphorylation causes diastolic dysfunction with HFpEF in cMyBP-C(t3SA) mice. Simultaneous force and [Ca(2+)]i measurements on intact papillary muscles show that enhancement of relaxation in cMyBP-C(t3SD) mice and impairment of relaxation in cMyBP-C(t3SA) mice are not because of altered [Ca(2+)]i handling, implicating that altered cross-bridge detachment rates mediate these changes in relaxation rates. CONCLUSIONS: cMyBP-C phosphorylation enhances relaxation, whereas deficient phosphorylation causes diastolic dysfunction and phenotypes resembling HFpEF. Thus, cMyBP-C is a potential target for treatment of HFpEF.


Asunto(s)
Proteínas Portadoras/metabolismo , Insuficiencia Cardíaca/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Función Ventricular Izquierda , Animales , Presión Sanguínea , Proteínas Portadoras/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diástole , Genotipo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Cinética , Ratones Transgénicos , Mutación , Fenotipo , Fosforilación , Procesamiento Proteico-Postraduccional , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA