Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gastroenterology ; 160(3): 755-770.e26, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33010250

RESUMEN

BACKGROUND & AIMS: The enteric nervous system (ENS) coordinates essential intestinal functions through the concerted action of diverse enteric neurons (ENs). However, integrated molecular knowledge of EN subtypes is lacking. To compare human and mouse ENs, we transcriptionally profiled healthy ENS from adult humans and mice. We aimed to identify transcripts marking discrete neuron subtypes and visualize conserved EN subtypes for humans and mice in multiple bowel regions. METHODS: Human myenteric ganglia and adjacent smooth muscle were isolated by laser-capture microdissection for RNA sequencing. Ganglia-specific transcriptional profiles were identified by computationally subtracting muscle gene signatures. Nuclei from mouse myenteric neurons were isolated and subjected to single-nucleus RNA sequencing, totaling more than 4 billion reads and 25,208 neurons. Neuronal subtypes were defined using mouse single-nucleus RNA sequencing data. Comparative informatics between human and mouse data sets identified shared EN subtype markers, which were visualized in situ using hybridization chain reaction. RESULTS: Several EN subtypes in the duodenum, ileum, and colon are conserved between humans and mice based on orthologous gene expression. However, some EN subtype-specific genes from mice are expressed in completely distinct morphologically defined subtypes in humans. In mice, we identified several neuronal subtypes that stably express gene modules across all intestinal segments, with graded, regional expression of 1 or more marker genes. CONCLUSIONS: Our combined transcriptional profiling of human myenteric ganglia and mouse EN provides a rich foundation for developing novel intestinal therapeutics. There is congruency among some EN subtypes, but we note multiple species differences that should be carefully considered when relating findings from mouse ENS research to human gastrointestinal studies.


Asunto(s)
Diferenciación Celular/genética , Sistema Nervioso Entérico/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Especificidad de la Especie , Adolescente , Adulto , Animales , Núcleo Celular/metabolismo , Colon/citología , Colon/inervación , Modelos Animales de Enfermedad , Duodeno/citología , Duodeno/inervación , Femenino , Enfermedades Gastrointestinales/diagnóstico , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/fisiopatología , Motilidad Gastrointestinal , Humanos , Íleon/citología , Íleon/inervación , Captura por Microdisección con Láser , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , RNA-Seq , Factores Sexuales , Análisis de la Célula Individual , Adulto Joven
2.
Nucleic Acids Res ; 48(6): 2924-2941, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31996893

RESUMEN

WDR5 is a highly-conserved nuclear protein that performs multiple scaffolding functions in the context of chromatin. WDR5 is also a promising target for pharmacological inhibition in cancer, with small molecule inhibitors of an arginine-binding pocket of WDR5 (the 'WIN' site) showing efficacy against a range of cancer cell lines in vitro. Efforts to understand WDR5, or establish the mechanism of action of WIN site inhibitors, however, are stymied by its many functions in the nucleus, and a lack of knowledge of the conserved gene networks-if any-that are under its control. Here, we have performed comparative genomic analyses to identify the conserved sites of WDR5 binding to chromatin, and the conserved genes regulated by WDR5, across a diverse panel of cancer cell lines. We show that a specific cohort of protein synthesis genes (PSGs) are invariantly bound by WDR5, demonstrate that the WIN site anchors WDR5 to chromatin at these sites, and establish that PSGs are bona fide, acute, and persistent targets of WIN site blockade. Together, these data reveal that WDR5 plays a predominant transcriptional role in biomass accumulation and provide further evidence that WIN site inhibitors act to repress gene networks linked to protein synthesis homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Biosíntesis de Proteínas/genética , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Cromatina/metabolismo , Secuencia Conservada/genética , Femenino , Humanos , Masculino , Unión Proteica , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Am J Physiol Renal Physiol ; 316(5): F847-F855, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30759021

RESUMEN

Flow cytometry studies on injured kidney tubules are complicated by the low yield of nucleated single cells. Furthermore, cell-specific responses such as cell cycle dynamics in vivo have conventionally relied on indirect immunohistochemistry and proximal tubule markers that may be downregulated in injury. Here, we report a new tissue dissociation protocol for the kidney with an early fixation step that greatly enhances the yield of single cells. Genetic labeling of the proximal tubule with either mT/mG "tomato" or R26Fucci2aR (Fucci) cell cycle reporter mice allows us to follow proximal tubule-specific changes in cell cycle after renal injury. Image-based flow cytometry (FlowSight) enables gating of the cell cycle and concurrent visualization of the cells with bright field and fluorescence. We used the Fucci mouse in conjunction with FlowSight to identify a discrete polyploid population in proximal tubules after aristolochic acid injury. The tissue dissociation protocol in conjunction with genetic labeling and image-based flow cytometry is a tool that can improve our understanding of any discrete cell population after injury.


Asunto(s)
Lesión Renal Aguda/patología , Ciclo Celular , Separación Celular/métodos , Células Epiteliales/patología , Citometría de Flujo , Túbulos Renales Proximales/patología , Fijación del Tejido/métodos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Animales , Ácidos Aristolóquicos , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Genes Reporteros , Túbulos Renales Proximales/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Transgénicos , Poliploidía
4.
Proc Natl Acad Sci U S A ; 113(3): 740-5, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26729880

RESUMEN

The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.


Asunto(s)
Neocórtex/citología , Neuronas/citología , Pan troglodytes/fisiología , Envejecimiento , Animales , Recuento de Células , Femenino , Corteza Motora/citología , Corteza Somatosensorial/citología , Corteza Visual/citología
5.
Cytometry A ; 89(3): 271-80, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26599989

RESUMEN

Mass and fluorescence cytometry are quantitative single cell flow cytometry approaches that are powerful tools for characterizing diverse tissues and cellular systems. Here mass cytometry was directly compared with fluorescence cytometry by studying phenotypes of healthy human peripheral blood mononuclear cells (PBMC) in the context of superantigen stimulation. One mass cytometry panel and five fluorescence cytometry panels were used to measure 20 well-established lymphocyte markers of memory and activation. Comparable frequencies of both common and rare cell subpopulations were observed with fluorescence and mass cytometry using biaxial gating. The unsupervised high-dimensional analysis tool viSNE was then used to analyze data sets generated from both mass and fluorescence cytometry. viSNE analysis effectively characterized PBMC using eight features per cell and identified similar frequencies of activated CD4+ T cells with both technologies. These results suggest combinations of unsupervised analysis programs and extended multiparameter cytometry will be indispensable tools for detecting perturbations in protein expression in both health and disease.


Asunto(s)
Citometría de Flujo/normas , Inmunofenotipificación/métodos , Leucocitos Mononucleares/citología , Espectrometría de Masas/normas , Antígenos CD/genética , Antígenos CD/inmunología , Expresión Génica , Humanos , Elementos de la Serie de los Lantanoides/análisis , Leucocitos Mononucleares/clasificación , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Análisis Multivariante
6.
Brain Behav Evol ; 88(1): 1-13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547956

RESUMEN

According to previous research, cell and neuron densities vary across neocortex in a similar manner across primate taxa. Here, we provide a more extensive examination of this effect in macaque monkeys. We separated neocortex from the underlying white matter in 4 macaque monkey hemispheres (1 Macaca nemestrina, 2 Macaca radiata, and 1 Macaca mulatta), manually flattened the neocortex, and divided it into smaller tissue pieces for analysis. The number of cells and neurons were determined for each piece across the cortical sheet using flow cytometry. Primary visual cortex had the most densely packed neurons and primary motor cortex had the least densely packed neurons. With respect to differences in brain size between cases, there was little variability in the total cell and neuron numbers within specific areas, and overall trends were similar to what has been previously described in Old World baboons and other primates. The average hemispheric total cell number per hemisphere ranged from 2.9 to 3.7 billion, while the average total neuron number ranged from 1.3 to 1.7 billion neurons. The visual cortex neuron densities were predictably higher, ranging from 18.2 to 34.7 million neurons/cm2 in macaques, in comparison to a range of 9.3-17.7 million neurons/cm2 across cortex as a whole. The results support other evidence that neuron surface densities vary across the cortical sheet in a predictable pattern within and across primate taxa.


Asunto(s)
Macaca/anatomía & histología , Neocórtex/citología , Neuronas/citología , Corteza Visual/citología , Animales , Recuento de Células , Femenino , Macaca mulatta/anatomía & histología , Macaca nemestrina/anatomía & histología , Macaca radiata/anatomía & histología , Masculino , Corteza Motora/citología , Neuroglía/citología , Especificidad de la Especie
7.
Proc Natl Acad Sci U S A ; 110(47): 19107-12, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191031

RESUMEN

Epilepsy is characterized by recurrent seizure activity that can induce pathological reorganization and alter normal function in neocortical networks. In the present study, we determined the numbers of cells and neurons across the complete extent of the cortex for two epileptic baboons with naturally occurring seizures and two baboons without epilepsy. Overall, the two epileptic baboons had a 37% average reduction in the number of cortical neurons compared with the two nonepileptic baboons. The loss of neurons was variable across cortical areas, with the most pronounced loss in the primary motor cortex, especially in lateral primary motor cortex, representing the hand and face. Less-pronounced reductions of neurons were found in other parts of the frontal cortex and in somatosensory cortex, but no reduction was apparent in the primary visual cortex and little in other visual areas. The results provide clear evidence that epilepsy in the baboon is associated with considerable reduction in the numbers of cortical neurons, especially in frontal areas of the cortex related to motor functions. Whether or not the reduction of neurons is a cause or an effect of seizures needs further investigation.


Asunto(s)
Epilepsia/patología , Neocórtex/citología , Neuronas/citología , Animales , Recuento de Células , Procesamiento de Imagen Asistido por Computador , Papio , Estadísticas no Paramétricas
8.
Brain Behav Immun ; 35: 33-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23831150

RESUMEN

Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response.


Asunto(s)
Encéfalo/inmunología , Dieta Alta en Grasa/efectos adversos , Monocitos/metabolismo , Neuroinmunomodulación , Obesidad/inmunología , Animales , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo
9.
Nat Genet ; 56(4): 595-604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38548990

RESUMEN

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis. Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA sequencing of lung tissue from 66 individuals with pulmonary fibrosis and 48 unaffected donors. Using a pseudobulk approach, we mapped expression quantitative trait loci (eQTLs) across 38 cell types, observing both shared and cell-type-specific regulatory effects. Furthermore, we identified disease interaction eQTLs and demonstrated that this class of associations is more likely to be cell-type-specific and linked to cellular dysregulation in pulmonary fibrosis. Finally, we connected lung disease risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression and implicates context-specific eQTLs as key regulators of lung homeostasis and disease.


Asunto(s)
Fibrosis Pulmonar , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Fibrosis Pulmonar/genética , Regulación de la Expresión Génica/genética , Pulmón , Herencia Multifactorial , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple
10.
Eur J Immunol ; 42(4): 870-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22531914

RESUMEN

In CBA/J mice, susceptibility to Mycobacterium tuberculosis (M.tb) is associated with low interferon-gamma (IFN-γ) responses to antigens (Antigen 85 (Ag85) and early secreted antigenic target-6 (ESAT-6)) that have been defined as immunodominant. Here, we asked whether the failure of CBA/J mice to recognize Ag85 is a consequence of M.tb infection or whether CBA/J mice have a general defect in generating specific T-cell responses to this protein antigen. We compared CBA/J mice during primary M.tb infection, Ag85 vaccination followed by M.tb challenge, or M.tb memory immune mice for their capacity to generate Ag85-specific IFN-γ responses and to control M.tb infection. CBA/J mice did not respond efficiently to Ag85 in the context of natural infection or re-infection. In contrast, CBA/J mice could generate Ag85-specific IFN-γ responses and protective immunity when this antigen was delivered as a soluble protein. Our data indicate that although M.tb infection of CBA/J mice does not drive an Ag85 response, these mice can fully and protectively respond to Ag85 if it is delivered as a vaccine. The data from this experimental model suggest that the Ag85-containing vaccines in clinical trials should protect M.tb susceptible humans.


Asunto(s)
Antígenos Bacterianos/farmacología , Memoria Inmunológica/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Animales , Antígenos Bacterianos/inmunología , Modelos Animales de Enfermedad , Humanos , Interferón gamma/inmunología , Ratones , Vacunación
11.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-36993211

RESUMEN

Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis (PF). Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA-sequencing of lung tissue from 67 PF and 49 unaffected donors. Employing a pseudo-bulk approach, we mapped expression quantitative trait loci (eQTL) across 38 cell types, observing both shared and cell type-specific regulatory effects. Further, we identified disease-interaction eQTL and demonstrated that this class of associations is more likely to be cell-type specific and linked to cellular dysregulation in PF. Finally, we connected PF risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression, and implicates context-specific eQTL as key regulators of lung homeostasis and disease.

12.
Am J Pathol ; 178(4): 1448-52, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21406172

RESUMEN

The host immune response directed against Helicobacter pylori is ineffective in eliminating the organism and strains harboring the cag pathogenicity island augment disease risk. Because eosinophils are a prominent component of H. pylori-induced gastritis, we investigated microbial and host mechanisms through which H. pylori regulates eosinophil migration. Our results indicate that H. pylori increases production of the chemokines CCL2, CCL5, and granulocyte-macrophage colony-stimulating factor by gastric epithelial cells and that these molecules induce eosinophil migration. These events are mediated by the cag pathogenicity island and by mitogen-activated protein kinases, suggesting that eosinophil migration orchestrated by H. pylori is regulated by a virulence-related locus.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Eosinófilos/microbiología , Células Epiteliales/citología , Helicobacter pylori/metabolismo , Línea Celular Tumoral , Movimiento Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Células Epiteliales/microbiología , Gastritis/microbiología , Humanos , Sistema de Señalización de MAP Quinasas , Modelos Estadísticos , Riesgo , Virulencia
13.
Front Immunol ; 13: 848168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860254

RESUMEN

In juvenile idiopathic arthritis (JIA) inflammatory T cells and their produced cytokines are drug targets and play a role in disease pathogenesis. Despite their clinical importance, the sources and types of inflammatory T cells involved remain unclear. T cells respond to polarizing factors to initiate types of immunity to fight infections, which include immunity types 1 (T1), 2 (T2), and 3 (T17). Polarizing factors drive CD4+ T cells towards T helper (Th) cell subtypes and CD8+ T cells towards cytotoxic T cell (Tc) subtypes. T1 and T17 polarization are associated with autoimmunity and production of the cytokines IFNγ and IL-17 respectively. We show that JIA and child healthy control (HC) peripheral blood mononuclear cells are remarkably similar, with the same frequencies of CD4+ and CD8+ naïve and memory T cell subsets, T cell proliferation, and CD4+ and CD8+ T cell subsets upon T1, T2, and T17 polarization. Yet, under T1 polarizing conditions JIA cells produced increased IFNγ and inappropriately produced IL-17. Under T17 polarizing conditions JIA T cells produced increased IL-17. Gene expression of IFNγ, IL-17, Tbet, and RORγT by quantitative PCR and RNA sequencing revealed activation of immune responses and inappropriate activation of IL-17 signaling pathways in JIA polarized T1 cells. The polarized JIA T1 cells were comprised of Th and Tc cells, with Th cells producing IFNγ (Th1), IL-17 (Th17), and both IFNγ-IL-17 (Th1.17) and Tc cells producing IFNγ (Tc1). The JIA polarized CD4+ T1 cells expressed both Tbet and RORγT, with higher expression of the transcription factors associated with higher frequency of IL-17 producing cells. T1 polarized naïve CD4+ cells from JIA also produced more IFNγ and more IL-17 than HC. We show that in JIA T1 polarization inappropriately generates Th1, Th17, and Th1.17 cells. Our data provides a tool for studying the development of heterogeneous inflammatory T cells in JIA under T1 polarizing conditions and for identifying pathogenic immune cells that are important as drug targets and diagnostic markers.


Asunto(s)
Artritis Juvenil , Interleucina-17 , Linfocitos T CD8-positivos/metabolismo , Niño , Citocinas , Humanos , Interleucina-17/metabolismo , Leucocitos Mononucleares , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Células TH1
14.
Sci Rep ; 12(1): 1848, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115608

RESUMEN

WDR5 nucleates the assembly of histone-modifying complexes and acts outside this context in a range of chromatin-centric processes. WDR5 is also a prominent target for pharmacological inhibition in cancer. Small-molecule degraders of WDR5 have been described, but most drug discovery efforts center on blocking the WIN site of WDR5, an arginine binding cavity that engages MLL/SET enzymes that deposit histone H3 lysine 4 methylation (H3K4me). Therapeutic application of WIN site inhibitors is complicated by the disparate functions of WDR5, but is generally guided by two assumptions-that WIN site inhibitors disable all functions of WDR5, and that changes in H3K4me drive the transcriptional response of cancer cells to WIN site blockade. Here, we test these assumptions by comparing the impact of WIN site inhibition versus WDR5 degradation on H3K4me and transcriptional processes. We show that WIN site inhibition disables only a specific subset of WDR5 activity, and that H3K4me changes induced by WDR5 depletion do not explain accompanying transcriptional responses. These data recast WIN site inhibitors as selective loss-of-function agents, contradict H3K4me as a relevant mechanism of action for WDR5 inhibitors, and indicate distinct clinical applications of WIN site inhibitors and WDR5 degraders.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Linfoma de Células B/tratamiento farmacológico , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Metilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Transducción de Señal , Transcripción Genética
15.
NAR Cancer ; 4(1): zcac007, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35252869

RESUMEN

Rhabdoid tumors (RT) are rare and deadly pediatric cancers driven by loss of SMARCB1, which encodes the SNF5 component of the SWI/SNF chromatin remodeler. Loss of SMARCB1 is associated with a complex set of phenotypic changes including vulnerability to inhibitors of protein synthesis and of the p53 ubiquitin-ligase HDM2. Recently, we discovered small molecule inhibitors of the 'WIN' site of WDR5, which in MLL-rearranged leukemia cells decrease the expression of a set of genes linked to protein synthesis, inducing a translational choke and causing p53-dependent inhibition of proliferation. Here, we characterize how WIN site inhibitors act in RT cells. As in leukemia cells, WIN site inhibition in RT cells causes the comprehensive displacement of WDR5 from chromatin, resulting in a decrease in protein synthesis gene expression. Unlike leukemia cells, however, the growth response of RT cells to WIN site blockade is independent of p53. Exploiting this observation, we demonstrate that WIN site inhibitor synergizes with an HDM2 antagonist to induce p53 and block RT cell proliferation in vitro. These data reveal a p53-independent action of WIN site inhibitors and forecast that future strategies to treat RT could be based on dual WDR5/HDM2 inhibition.

16.
Commun Biol ; 5(1): 1366, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513703

RESUMEN

Cellular metabolism influences immune cell function, with mitochondrial fatty acid ß-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Metabolismo de los Lípidos , Neutrófilos , Animales , Humanos , Lactante , Ratones , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Neutrófilos/metabolismo
17.
NPJ Regen Med ; 6(1): 22, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824346

RESUMEN

Endogenous ß cell regeneration could alleviate diabetes, but proliferative stimuli within the islet microenvironment are incompletely understood. We previously found that ß cell recovery following hypervascularization-induced ß cell loss involves interactions with endothelial cells (ECs) and macrophages (MΦs). Here we show that proliferative ECs modulate MΦ infiltration and phenotype during ß cell loss, and recruited MΦs are essential for ß cell recovery. Furthermore, VEGFR2 inactivation in quiescent ECs accelerates islet vascular regression during ß cell recovery and leads to increased ß cell proliferation without changes in MΦ phenotype or number. Transcriptome analysis of ß cells, ECs, and MΦs reveals that ß cell proliferation coincides with elevated expression of extracellular matrix remodeling molecules and growth factors likely driving activation of proliferative signaling pathways in ß cells. Collectively, these findings suggest a new ß cell regeneration paradigm whereby coordinated interactions between intra-islet MΦs, ECs, and extracellular matrix mediate ß cell self-renewal.

18.
Oncogene ; 40(20): 3593-3609, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33931740

RESUMEN

The SNF5 subunit of the SWI/SNF chromatin remodeling complex has been shown to act as a tumor suppressor through multiple mechanisms, including impairing the ability of the oncoprotein transcription factor MYC to bind chromatin. Beyond SNF5, however, it is unknown to what extent MYC can access additional SWI/SNF subunits or how these interactions affect the ability of MYC to drive transcription, particularly in SNF5-null cancers. Here, we report that MYC interacts with multiple SWI/SNF components independent of SNF5. We show that MYC binds the pan-SWI/SNF subunit BAF155 through the BAF155 SWIRM domain, an interaction that is inhibited by the presence of SNF5. In SNF5-null cells, MYC binds with remaining SWI/SNF components to essential genes, although for a purpose that is distinct from chromatin remodeling. Analysis of MYC-SWI/SNF target genes in SNF5-null cells reveals that they are associated with core biological functions of MYC linked to protein synthesis. These data reveal that MYC can bind SWI/SNF in an SNF5-independent manner and that SNF5 modulates access of MYC to core SWI/SNF complexes. This work provides a framework in which to interrogate the influence of SWI/SNF on MYC function in cancers in which SWI/SNF or MYC are altered.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína SMARCB1/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Células HEK293 , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteína SMARCB1/genética , Factores de Transcripción/genética
19.
J Immunol ; 181(8): 5545-50, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18832712

RESUMEN

IL-10 is a potent immunomodulatory cytokine that affects innate and acquired immune responses. The immunological consequences of IL-10 production during pulmonary tuberculosis (TB) are currently unknown, although IL-10 has been implicated in reactivation TB in humans and with TB disease in mice. Using Mycobacterium tuberculosis-susceptible CBA/J mice, we show that blocking the action of IL-10 in vivo during chronic infection stabilized the pulmonary bacterial load and improved survival. Furthermore, this beneficial outcome was highly associated with the recruitment of T cells to the lungs and enhanced T cell IFN-gamma production. Our results indicate that IL-10 promotes TB disease progression. These findings have important diagnostic and/or therapeutic implications for the prevention of reactivation TB in humans.


Asunto(s)
Interferón gamma/inmunología , Interleucina-10/inmunología , Pulmón/inmunología , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Enfermedad Crónica , Femenino , Humanos , Pulmón/microbiología , Ratones , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/prevención & control
20.
Physiol Rep ; 7(23): e14303, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31814333

RESUMEN

There has been a resurgence of interest in the volume-regulated anion channel (VRAC) since the recent cloning of the LRRC8A-E gene family that encodes VRAC. The channel is a heteromer comprised of LRRC8A and at least one other family member; disruption of LRRC8A expression abolishes VRAC activity. The best-in-class VRAC inhibitor, DCPIB, suffers from off-target activity toward several different channels and transporters. Considering that some anion channel inhibitors also suppress mitochondrial respiration, we systematically explored whether DCPIB inhibits respiration in wild type (WT) and LRRC8A-knockout HAP-1 and HEK-293 cells. Knockout of LRRC8A had no apparent effects on cell morphology, proliferation rate, mitochondrial content, or expression of several mitochondrial genes in HAP-1 cells. Addition of 10 µM DCPIB, a concentration typically used to inhibit VRAC, suppressed basal and ATP-linked respiration in part through uncoupling the inner mitochondrial membrane (IMM) proton gradient and membrane potential. Additionally, DCPIB inhibits the activity of complex I, II, and III of the electron transport chain (ETC). Surprisingly, the effects of DCPIB on mitochondrial function are also observed in HAP-1 and HEK-293 cells which lack LRRC8A expression. Finally, we demonstrate that DCPIB activates ATP-inhibitable potassium channels comprised of heterologously expressed Kir6.2 and SUR1 subunits. These data indicate that DCPIB suppresses mitochondrial respiration and ATP production by dissipating the mitochondrial membrane potential and inhibiting complexes I-III of the ETC. They further justify the need for the development of sharper pharmacological tools for evaluating the integrative physiology and therapeutic potential of VRAC in human diseases.


Asunto(s)
Ciclopentanos/farmacología , Indanos/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Células HEK293 , Humanos , Canales KATP/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA