RESUMEN
Chronic variable stress (CVS) exposure modifies the paraventricular nucleus of the hypothalamus (PVN) in a manner consistent with enhanced central drive of the hypothalamo-pituitary-adrenocortical (HPA) axis. As previous reports suggest that post-stress enhancement of norepinephrine (NE) action contributes to chronic stress regulation at the level of the PVN, we hypothesised that PVN-projecting NE neurons were necessary for the stress facilitatory effects of CVS. Following intra-PVN injection of saporin toxin conjugated to a dopamine beta-hydroxylase (DBH) antibody (DSAP), in rats PVN DBH immunoreactivity was almost completely eliminated, but immunoreactive afferents to other key regions involved in stress integration were spared (e.g. DBH fiber densities were unaffected in the central nucleus of the amygdala). Reductions in DBH-positive fiber density were associated with reduced numbers of DBH-immunoreactive neurons in the nucleus of the solitary tract and locus coeruleus. Following 2 weeks of CVS, DSAP injection did not alter stress-induced adrenal hypertrophy or attenuation of body weight gain, indicating that PVN-projecting NE [and epinephrine (E)] neurons are not essential for these physiological effects of chronic stress. In response to acute restraint stress, PVN-targeted DSAP injection attenuated peak adrenocorticotrophic hormone (ACTH) and corticosterone in controls, but only attenuated peak ACTH in CVS animals, suggesting that enhanced adrenal sensitivity compensated for reduced excitatory drive of the PVN. Our data suggest that PVN-projecting NE/E neurons contribute to the generation of acute stress responses, and are required for HPA axis drive (ACTH release) during chronic stress. However, loss of NE/E drive at the PVN appears to be buffered by compensation at the level of the adrenal.
Asunto(s)
Fibras Adrenérgicas/fisiología , Núcleo Hipotalámico Paraventricular/fisiopatología , Estrés Psicológico/fisiopatología , Hormona Adrenocorticotrópica/sangre , Animales , Corticosterona/sangre , Neuronas Dopaminérgicas/fisiología , Sistema Hipotálamo-Hipofisario/fisiopatología , Masculino , Núcleo Hipotalámico Paraventricular/citología , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas , Ratas Sprague-DawleyRESUMEN
Pre-clinical and clinical studies have employed treatment with glucocorticoid receptor (GR) antagonists in an attempt to limit the deleterious behavioral and physiological effects of excess glucocorticoids. Here, we examined the effects of GR antagonists on neuroendocrine and behavioral stress responses, using two compounds: mifepristone, a GR antagonist that is also a progesterone receptor antagonist, and CORT 108297, a specific GR antagonist lacking anti-progestin activity. Given its well-documented impact on neuroendocrine and behavioral stress responses, imipramine (tricyclic antidepressant) served as a positive control. Male rats were treated for five days with mifepristone (10mg/kg), CORT 108297 (30mg/kg and 60mg/kg), imipramine (10mg/kg) or vehicle and exposed to forced swim test (FST) or restraint stress. Relative to vehicle, imipramine potently suppressed adrenocorticotropin hormone (ACTH) responses to FST and restraint exposure. Imipramine also decreased immobility in the FST, consistent with antidepressant actions. Both doses of CORT 108297 potently suppressed peak corticosterone responses to FST and restraint stress. However, only the higher dose of CORT 108297 (60mg/kg) significantly decreased immobility in the FST. In contrast, mifepristone induced protracted secretion of corticosterone in response to both stressors, and modestly decreased immobility in the FST. Taken together, the data indicate distinct effects of each compound on neuroendocrine stress responses and also highlight dissociation between corticosterone responses and immobility in the FST. Within the context of the present study, our data suggest that CORT 108297 may be an attractive alternative for mitigating neuroendocrine and behavioral states associated with excess glucocorticoid secretion.
Asunto(s)
Antidepresivos Tricíclicos/farmacología , Compuestos Aza/farmacología , Conducta Animal/efectos de los fármacos , Corticosterona/sangre , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Antagonistas de Hormonas/farmacología , Imipramina/farmacología , Mifepristona/farmacología , Estrés Psicológico/sangre , Animales , Antidepresivos Tricíclicos/administración & dosificación , Compuestos Aza/administración & dosificación , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Antagonistas de Hormonas/administración & dosificación , Imipramina/administración & dosificación , Masculino , Mifepristona/administración & dosificación , Ratas , Ratas Sprague-DawleyRESUMEN
The Ventromedial hypothalamic nucleus (VMN) maintains healthy metabolic function through several important roles. Collectively, homeostasis is maintained via intermingled cells within the VMN that raise blood glucose, lower blood glucose, and stimulate energy expenditure when needed. This perspective discusses the defining factors for the VMN cell types that govern distinct functions induced by the VMN, particularly in relation to energy balance and blood glucose levels. Special attention is given to distinct features of VMN cells responsible for these processes. Finally, these topics are reviewed in the context of research funded by the Pathway to Stop Diabetes initiative, highlighting key findings and current unresolved questions for future investigations.
RESUMEN
OBJECTIVE: Hypothalamic signals potently stimulate energy expenditure by engaging peripheral mechanisms to restore energy homeostasis. Previous studies have identified several critical hypothalamic sites (e.g. preoptic area (POA) and ventromedial hypothalamic nucleus (VMN)) that could be part of an interconnected neurocircuit that controls tissue thermogenesis and essential for body weight control. However, the key neurocircuit that can stimulate energy expenditure has not yet been established. METHODS: Here, we investigated the downstream mechanisms by which VMN neurons stimulate adipose tissue thermogenesis. We manipulated subsets of VMN neurons acutely as well as chronically and studied its effect on tissue thermogenesis and body weight control, using Sf1Cre and Adcyap1Cre mice and measured physiological parameters under both high-fat diet and standard chow diet conditions. To determine the node efferent to these VMN neurons, that is involved in modulating energy expenditure, we employed electrophysiology and optogenetics experiments combined with measurements using tissue-implantable temperature microchips. RESULTS: Activation of the VMN neurons that express the steroidogenic factor 1 (Sf1; VMNSf1 neurons) reduced body weight, adiposity and increased energy expenditure in diet-induced obese mice. This function is likely mediated, at least in part, by the release of the pituitary adenylate cyclase-activating polypeptide (PACAP; encoded by the Adcyap1 gene) by the VMN neurons, since we previously demonstrated that PACAP, at the VMN, plays a key role in energy expenditure control. Thus, we then shifted focus to the subpopulation of VMNSf1 neurons that contain the neuropeptide PACAP (VMNPACAP neurons). Since the VMN neurons do not directly project to the peripheral tissues, we traced the location of the VMNPACAP neurons' efferents. We identified that VMNPACAP neurons project to and activate neurons in the caudal regions of the POA whereby these projections stimulate tissue thermogenesis in brown and beige adipose tissue. We demonstrated that selective activation of caudal POA projections from VMNPACAP neurons induces tissue thermogenesis, most potently in negative energy balance and activating these projections lead to some similar, but mostly unique, patterns of gene expression in brown and beige tissue. Finally, we demonstrated that the activation of the VMNPACAP neurons' efferents that lie at the caudal POA are necessary for inducing tissue thermogenesis in brown and beige adipose tissue. CONCLUSIONS: These data indicate that VMNPACAP connections with the caudal POA neurons impact adipose tissue function and are important for induction of tissue thermogenesis. Our data suggests that the VMNPACAP â caudal POA neurocircuit and its components are critical for controlling energy balance by activating energy expenditure and body weight control.
Asunto(s)
Metabolismo Energético , Neuronas , Área Preóptica , Termogénesis , Núcleo Hipotalámico Ventromedial , Animales , Núcleo Hipotalámico Ventromedial/metabolismo , Termogénesis/fisiología , Área Preóptica/metabolismo , Ratones , Neuronas/metabolismo , Masculino , Factor Esteroidogénico 1/metabolismo , Factor Esteroidogénico 1/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Peso Corporal , Tejido Adiposo Pardo/metabolismoRESUMEN
High-fat diet (HFD) is associated with Alzheimer's disease (AD) and type 2 diabetes risk, which share features such as insulin resistance and amylin deposition. We examined gene expression associated with astrocytes and microglia since dysfunction of these cell types is implicated in AD pathogenesis. We hypothesize gene expression changes in disease-associated astrocytes (DAA), disease-associated microglia and human Alzheimer's microglia exist in diabetic and obese individuals before AD development. By analyzing bulk RNA-sequencing (RNA-seq) data generated from brains of mice fed HFD and humans with AD, 11 overlapping AD-associated differentially expressed genes were identified, including Kcnj2, C4b and Ddr1, which are upregulated in response to both HFD and AD. Analysis of single cell RNA-seq (scRNA-seq) data indicated C4b is astrocyte specific. Spatial transcriptomics (ST) revealed C4b colocalizes with Gfad, a known astrocyte marker, and the colocalization of C4b expressing cells with Gad2 expressing cells, i.e., GABAergic neurons, in mouse brain. There also exists a positive correlation between C4b and Gad2 expression in ST indicating a potential interaction between DAA and GABAergic neurons. These findings provide novel links between the pathogenesis of obesity, diabetes and AD and identify C4b as a potential early marker for AD in obese or diabetic individuals.
Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Ratones , Humanos , Animales , Astrocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/metabolismo , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismoRESUMEN
Life stress frequently occurs within the context of homeostatic challenge, requiring integration of physiological and psychological need into appropriate hormonal, cardiovascular, and behavioral responses. To test neural mechanisms underlying stress integration within the context of homeostatic adversity, we evaluated the impact of a pronounced physiological (hypernatremia) challenge on hypothalamic-pituitary-adrenal (HPA), cardiovascular, and behavioral responses to an acute psychogenic stress. Relative to normonatremic controls, rats rendered mildly hypernatremic had decreased HPA activation in response to physical restraint, a commonly used rodent model of psychogenic stress. In addition, acute hypernatremia attenuated the cardiovascular response to restraint and promoted faster recovery to prestress levels. Subsequent to restraint, hypernatremic rats had significantly more c-Fos expression in oxytocin- and vasopressin-containing neurons within the supraoptic and paraventricular nuclei of the hypothalamus. Hypernatremia also completely eliminated the increased plasma renin activity that accompanied restraint in controls, but greatly elevated circulating levels of oxytocin. The endocrine and cardiovascular profile of hypernatremic rats was predictive of decreased anxiety-like behavior in the social interaction test. Collectively, the results indicate that acute hypernatremia is a potent inhibitor of the HPA, cardiovascular, and behavioral limbs of the stress response. The implications are that the compensatory responses that promote renal-sodium excretion when faced with hypernatremia also act on the nervous system to decrease reactivity to psychogenic stressors and facilitate social behavior, which may suppress the anxiety associated with approaching a communal water source and support the social interactions that may be encountered when engaging in drinking behavior.
Asunto(s)
Hipodermoclisis , Conducta Social , Estrés Psicológico/fisiopatología , Hormona Adrenocorticotrópica/sangre , Análisis de Varianza , Animales , Conducta Animal/fisiología , Presión Sanguínea/fisiología , Corticosterona/sangre , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/fisiología , Masculino , Ósmosis , Oxitocina/sangre , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Radioinmunoensayo/métodos , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio/farmacología , Estrés Psicológico/sangre , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/metabolismo , Factores de Tiempo , Péptido Intestinal Vasoactivo/sangreRESUMEN
This study elucidates the neural circuits by which circulating angiotensin II (ANGII) acts in the brain to influence humoral and behavioral responses to psychological stressors. To test the hypothesis that systemic ANGII mediates stress responding via the subfornical organ (SFO), we first found that the timing of increased systemic ANGII in response to 60 min restraint coincides with increased c-fos mRNA expression in the SFO. Next, we administered an anterograde neuronal tract tracer into the SFO and found that fibers originating there make appositions onto neurons in the paraventricular nucleus of the hypothalamus that are also c-fos positive following restraint stress. To determine whether circulating ANGII stimulates the release of stress hormones via activation of angiotensin type 1 receptors (AT1R) within the SFO, we delivered lentivirus to knockdown AT1R expression locally in the SFO. Inhibition of AT1R specifically within the SFO blunted the release of adrenocorticotrophin-releasing hormone and corticosterone in response to restraint stress and caused rats to spend more time in the open arms of an elevated-plus maze than controls, indicating that inhibition of AT1R within the SFO is anxiolytic. Collectively, these results suggest that circulating ANGII acts on AT1R in the SFO to influence responding to psychological stressors.
Asunto(s)
Angiotensina II/farmacología , Conducta Animal/efectos de los fármacos , Sistema Endocrino/efectos de los fármacos , Estrés Psicológico , Órgano Subfornical/efectos de los fármacos , Análisis de Varianza , Angiotensina II/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hormonas/sangre , Masculino , Fitohemaglutininas/farmacología , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Estrés Psicológico/sangre , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/patología , Órgano Subfornical/metabolismo , Factores de Tiempo , Transducción GenéticaRESUMEN
Chronic stress induces presynaptic and postsynaptic modifications in the paraventricular nucleus of the hypothalamus that are consistent with enhanced excitatory hypothalamo-pituitary-adrenocortical (HPA) axis drive. The brain regions mediating these molecular modifications are not known. We hypothesized that chronic variable stress (CVS) tonically activates stress-excitatory regions that interact with the paraventricular nucleus of the hypothalamus, culminating in stress facilitation. In order to identify chronically activated brain regions, ΔFosB, a documented marker of tonic neuronal activation, was assessed in known stress regulatory limbic and brainstem sites. Four experimental groups were included: CVS, repeated restraint (RR) (control for HPA habituation), animals weight-matched (WM) to CVS animals (control for changes in circulating metabolic factors due to reduced weight gain), and non-handled controls. CVS, (but not RR or WM) induced adrenal hypertrophy, indicating that sustained HPA axis drive only occurred in the CVS group. CVS (but not RR or WM) selectively increased the number of FosB/ΔFosB nuclei in the nucleus of the solitary tract, posterior hypothalamic nucleus, and both the infralimbic and prelimbic divisions of the medial prefrontal cortex, indicating an involvement of these regions in chronic drive of the HPA axis. Increases in FosB/ΔFosB-immunoreactive cells were observed following both RR and CVS in the other regions (e.g. the dorsomedial hypothalamus), suggesting activation by both habituating and non-habituating stress conditions. The data suggest that unpredictable stress uniquely activates interconnected cortical, hypothalamic, and brainstem nuclei, potentially revealing the existence of a recruited circuitry mediating chronic drive of brain stress effector systems.
Asunto(s)
Tronco Encefálico/fisiopatología , Sistema Límbico/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Tronco Encefálico/química , Sistema Límbico/química , Masculino , Proteínas Proto-Oncogénicas c-fos/análisis , Proteínas Proto-Oncogénicas c-fos/fisiología , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/patologíaRESUMEN
The nucleus of the solitary tract (NTS) is a critical integrative site for coordination of autonomic and endocrine stress responses. Stress-excitatory signals from the NTS are communicated by both catecholaminergic [norepinephrine (NE), epinephrine (E)] and noncatecholaminergic [e.g., glucagon-like peptide-1 (GLP-1)] neurons. Recent studies suggest that outputs of the NE/E and GLP-1 neurons of the NTS are selectively engaged during acute stress. This study was designed to test mechanisms of chronic stress integration in the paraventricular nucleus, focusing on the role of glucocorticoids. Our data indicate that chronic variable stress (CVS) causes downregulation of preproglucagon (GLP-1 precursor) mRNA in the NTS and reduction of GLP-1 innervation to the paraventricular nucleus of the hypothalamus. Glucocorticoids were necessary for preproglucagon (PPG) reduction in CVS animals and were sufficient to lower PPG mRNA in otherwise unstressed animals. The data are consistent with a glucocorticoid-mediated withdrawal of GLP-1 in key stress circuits. In contrast, expression of tyrosine hydroxylase mRNA, the rate-limiting enzyme in catecholamine synthesis, was increased by stress in a glucocorticoid-independent manner. These suggest differential roles of ascending catecholamine and GLP-1 systems in chronic stress, with withdrawal of GLP-1 involved in stress adaptation and enhanced NE/E capacity responsible for facilitation of responses to novel stress experiences.
Asunto(s)
Péptido 1 Similar al Glucagón/genética , Glucocorticoides/fisiología , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Adaptación Fisiológica/fisiología , Animales , Catecolaminas/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Péptido 1 Similar al Glucagón/metabolismo , Glucocorticoides/metabolismo , Masculino , Vías Nerviosas/citología , Vías Nerviosas/enzimología , Vías Nerviosas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/enzimología , Núcleo Hipotalámico Paraventricular/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Rombencéfalo/citología , Núcleo Solitario/enzimología , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
Body energy homeostasis results from balancing energy intake and energy expenditure. Central nervous system administration of pituitary adenylate cyclase activating polypeptide (PACAP) dramatically alters metabolic function, but the physiologic mechanism of this neuropeptide remains poorly defined. PACAP is expressed in the mediobasal hypothalamus (MBH), a brain area essential for energy balance. Ventromedial hypothalamic nucleus (VMN) neurons contain, by far, the largest and most dense population of PACAP in the medial hypothalamus. This region is involved in coordinating the sympathetic nervous system in response to metabolic cues in order to re-establish energy homeostasis. Additionally, the metabolic cue of leptin signaling in the VMN regulates PACAP expression. We hypothesized that PACAP may play a role in the various effector systems of energy homeostasis, and tested its role by using VMN-directed, but MBH encompassing, adeno-associated virus (AAVCre) injections to ablate Adcyap1 (gene coding for PACAP) in mice (Adcyap1MBHKO mice). Adcyap1MBHKO mice rapidly gained body weight and adiposity, becoming hyperinsulinemic and hyperglycemic. Adcyap1MBHKO mice exhibited decreased oxygen consumption (VO2), without changes in activity. These effects appear to be due at least in part to brown adipose tissue (BAT) dysfunction, and we show that PACAP-expressing cells in the MBH can stimulate BAT thermogenesis. While we observed disruption of glucose clearance during hyperinsulinemic/euglycemic clamp studies in obese Adcyap1MBHKO mice, these parameters were normal prior to the onset of obesity. Thus, MBH PACAP plays important roles in the regulation of metabolic rate and energy balance through multiple effector systems on multiple time scales, which highlight the diverse set of functions for PACAP in overall energy homeostasis.
Asunto(s)
Hipotálamo/metabolismo , Obesidad/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Tejido Adiposo Pardo , Animales , Peso Corporal , Metabolismo Energético , Femenino , Humanos , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Obesidad/genética , Obesidad/fisiopatología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Sistema Nervioso Simpático/metabolismo , Termogénesis , Núcleo Hipotalámico Ventromedial/metabolismoRESUMEN
While Cre-dependent viral systems permit the manipulation of many neuron types, some cell populations cannot be targeted by a single DNA recombinase. Although the combined use of Flp and Cre recombinases can overcome this limitation, insufficient recombinase activity can reduce the efficacy of existing Cre+Flp-dependent viral systems. We developed a sensitive dual recombinase-activated viral approach: tTA-driven Recombinase-Guided Intersectional Targeting (tTARGIT) adeno-associated viruses (AAVs). tTARGIT AAVs utilize a Flp-dependent tetracycline transactivator (tTA) 'Driver' AAV and a tetracycline response element-driven, Cre-dependent 'Payload' AAV to express the transgene of interest. We employed this system in Slc17a6FlpO;LeprCre mice to manipulate LepRb neurons of the ventromedial hypothalamus (VMH; LepRbVMH neurons) while omitting neighboring LepRb populations. We defined the circuitry of LepRbVMH neurons and roles for these cells in the control of food intake and energy expenditure. Thus, the tTARGIT system mediates robust recombinase-sensitive transgene expression, permitting the precise manipulation of previously intractable neural populations.
The brain contains hundreds of types of neurons, which differ in size, shape and behavior. But neuroscientists often wish to study individual neuronal types in isolation. They are able to do this with the aid of a toolkit made up of two parts: viral vectors and genetically modified mice. Viral vectors are viruses that have been modified so that they are no longer harmful and can instead be used to introduce genetic material into cells on demand. To create a viral vector, the virus' own genetic material is replaced with a 'cargo' gene, such as the gene for a fluorescent protein. The virus is then introduced into a new host such as a mouse. Importantly, the virus only produces the protein encoded by its 'cargo' gene if it is inside a cell that also contains one of two specific enzymes. These enzymes are called Cre and Flp. This is where the second part of the toolkit comes in. Mice can be genetically engineered to produce either Cre or Flp exclusively in specific cell types. By introducing a viral vector into mice that produce either Cre or Flp only in one particular type of neuron, researchers can limit the activity of the cargo gene to that neuronal type. But sometimes even this approach is not selective enough. Researchers may wish to limit the activity of the cargo gene to a subpopulation of cells that produce Cre or Flp. Or they may wish to target only Cre- or Flp-producing cells in a small area of the brain, while leaving cells in neighboring areas unaffected. Sabatini et al. have now overcome this limitation by developing and testing a new set of viral vectors that are active only in neurons that produce both Cre and Flp. The vectors are called tTARGIT AAVs and allow researchers to target cells more precisely than was possible with the previous version of the toolkit. Sabatini et al. show tTARGIT AAVs in action by using them to identify a group of neurons that control how much energy mice use and how much food they eat. As well as applying the vectors to their own research on obesity, Sabatini et al. have also made them freely available for other researchers to use in their own projects.
Asunto(s)
Expresión Génica , Neuronas/fisiología , Transgenes , Animales , Dependovirus/genética , Femenino , Masculino , Ratones , Ratones TransgénicosRESUMEN
An emerging literature attests to the ability of psychological stress to alter the inflammatory cytokine environment of the body. While the ability of stress to cause cytokine release is well established, the neural pathways involved in this control have yet to be identified. This study tests the hypothesis that IL-6 neurons of the hypothalamo-neurohypophyseal system (HNS), a neural pathway proposed to secrete IL-6 into the circulation, are activated in response to psychological stress. Colocalization studies confirm robust expression of IL-6 in cell bodies and fibers of vasopressin (but not oxytocin) neurons of the paraventricular (PVN) and supraoptic nucleus (SON) of the rat hypothalamus. In response to restraint, there was a greater increase in c-Fos expression in SON IL-6-positive (IL-6+) neurons. In addition, both psychogenic (restraint) or systemic stress (hypoxia) lead to phosphorylated ERK induction only in IL-6+ magnocellular neurons, indicating selective activation of the MAPK signaling pathway in the IL-6 subset of magnocellular neurons. Finally, restraint upregulated IL-6 mRNA expression in both the PVN and SON, which was accompanied by a four-fold increase in circulating IL-6. The data indicate that noninflammatory stressors selectively activate IL-6 magnocellular neurons, upregulate IL-6 gene expression in the PVN and SON, and increase plasma IL-6. In summary, results show that IL-6 neurons of the HNS are a recruited component of the response to psychological stress.
Asunto(s)
Hipotálamo/citología , Neuronas/fisiología , Estrés Psicológico/metabolismo , Animales , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Genes , Hipotálamo/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Oxitocina/sangre , Oxitocina/genética , Oxitocina/metabolismo , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/genética , Núcleo Supraóptico/citología , Núcleo Supraóptico/metabolismo , Regulación hacia Arriba , Vasopresinas/genética , Vasopresinas/metabolismoRESUMEN
To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.
Asunto(s)
Ingestión de Alimentos , Metabolismo Energético , Neuronas/metabolismo , Receptores de Calcitonina/fisiología , Núcleo Solitario/metabolismo , Animales , Peso Corporal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Núcleo Solitario/citologíaRESUMEN
To identify neurons that specifically increase blood glucose from among the diversely functioning cell types in the ventromedial hypothalamic nucleus (VMN), we studied the cholecystokinin receptor B-expressing (CCKBR-expressing) VMN targets of glucose-elevating parabrachial nucleus neurons. Activation of these VMNCCKBR neurons increased blood glucose. Furthermore, although silencing the broader VMN decreased energy expenditure and promoted weight gain without altering blood glucose levels, silencing VMNCCKBR neurons decreased hIepatic glucose production, insulin-independently decreasing blood glucose without altering energy balance. Silencing VMNCCKBR neurons also impaired the counterregulatory response to insulin-induced hypoglycemia and glucoprivation and replicated hypoglycemia-associated autonomic failure. Hence, VMNCCKBR cells represent a specialized subset of VMN cells that function to elevate glucose. These cells not only mediate the allostatic response to hypoglycemia but also modulate the homeostatic setpoint for blood glucose in an insulin-independent manner, consistent with a role for the brain in the insulin-independent control of glucose homeostasis.
Asunto(s)
Glucemia/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Femenino , Insulina/genética , Insulina/metabolismo , Masculino , Ratones , Ratones TransgénicosRESUMEN
Growing evidence implicates neurons that project from the lateral parabrachial nucleus (LPBN) to the hypothalamic ventromedial nucleus (VMN) in a neurocircuit that drives counterregulatory responses to hypoglycemia, including increased glucagon secretion. Among LPBN neurons in this circuit is a subset that expresses cholecystokinin (LPBNCCK neurons) and is tonically inhibited by leptin. Because uncontrolled diabetes is associated with both leptin deficiency and hyperglucagonemia, and because intracerebroventricular (ICV) leptin administration reverses both hyperglycemia and hyperglucagonemia in this setting, we hypothesized that deficient leptin inhibition of LPBNCCK neurons drives activation of this LPBNâVMN circuit and thereby results in hyperglucagonemia. Here, we report that although bilateral microinjection of leptin into the LPBN does not ameliorate hyperglycemia in rats with streptozotocin-induced diabetes mellitus (STZ-DM), it does attenuate the associated hyperglucagonemia and ketosis. To determine if LPBN leptin signaling is required for the antidiabetic effect of ICV leptin in STZ-DM, we studied mice in which the leptin receptor was selectively deleted from LPBNCCK neurons. Our findings show that although leptin signaling in these neurons is not required for the potent antidiabetic effect of ICV leptin, it is required for leptin-mediated suppression of diabetic hyperglucagonemia. Taken together, these findings suggest that leptin-mediated effects in animals with uncontrolled diabetes occur through actions involving multiple brain areas, including the LPBN, where leptin acts specifically to inhibit glucagon secretion and associated ketosis.
Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Glucagón/sangre , Cetosis/metabolismo , Leptina/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Animales , Glucemia , Inyecciones Intraventriculares , Insulina/sangre , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleos Parabraquiales/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacosRESUMEN
The adipocyte-derived hormone leptin acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake, and to promote energy expenditure. We generated mice that express Cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrknockout (KO) mice caused hyperphagic obesity. Because LepRb-mediated transcriptional control plays a crucial role in leptin action, we used translating ribosome affinity purification followed by RNA sequencing to define the transcriptome of hypothalamic Calcr neurons, along with its alteration in LepRbCalcrKO mice. We found that ARC LepRbCalcr cells include neuropeptide Y (NPY)/agouti-related peptide (AgRP)/γ-aminobutyric acid (GABA) ("NAG") cells as well as non-NAG cells that are distinct from pro-opiomelanocortin cells. Furthermore, although LepRbCalcrKO mice exhibited dysregulated expression of several genes involved in energy balance, neither the expression of Agrp and Npy nor the activity of NAG cells was altered in vivo. Thus, although direct leptin action via LepRbCalcr cells plays an important role in leptin action, our data also suggest that leptin indirectly, as well as directly, regulates these cells.
Asunto(s)
Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Leptina/análogos & derivados , Neuronas/fisiología , Receptores de Calcitonina/metabolismo , Receptores de Leptina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Ingestión de Alimentos/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Leptina/farmacología , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , Receptores de Leptina/genéticaRESUMEN
The visible burrow system produces a distinct combination of psychological and metabolic stress on, primarily, subordinate individuals that results in pronounced physiologic and behavioral dysfunction. However, the mechanisms underlying the consequences of chronic subordination stress are largely unknown. The simplest mechanistic explanation is that adaptations within brain systems with overlapping functions of both psychological and metabolic control provide immediate benefits that result in lasting susceptibility to diseases, disorders, and increased mortality rates in subordinates. Circuits regulated by leptin adapt to fluctuating levels of energy storage, such that the loss of leptin action within leptin-regulated neurocircuitry results in dysfunction in physiologic and behavioral systems implicated in the consequences of chronic social subordination. Thus, leptin-regulated neurocircuitry may provide a window into understanding the consequences of social subordination stress. This review examines the neural systems of leptin physiology implicated in social subordination stress: energy balance, motivation, HPA axis, and glycemic control.
Asunto(s)
Dominación-Subordinación , Sistema Hipotálamo-Hipofisario/metabolismo , Leptina/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico/metabolismo , Animales , Vías Nerviosas/metabolismoRESUMEN
Mood disorders such as major depressive disorder (MDD) affect a significant proportion of the population. Although progress has been made in the development of therapeutics, a large number of individuals do not attain full remission of symptoms and adverse side effects affect treatment compliance for some. In order to develop new therapies, there is a push for new models that better reflect the multiple risk factors that likely contribute to the development of depressive illness. We hypothesized that early life stress would exacerbate the depressive-like phenotype that we have previously observed in socially subordinate (SUB) adult male rats in the visible burrow system (VBS), a semi-natural, ethologically relevant environment in which males in a colony form a dominance hierarchy. Dams were exposed to chronic variable stress (CVS) during the last week of gestation, resulting in a robust and non-habituating glucocorticoid response that did not alter maternal food intake, body weight or litter size and weight. As adults, one prenatal CVS (PCVS) and one non-stressed (NS) male were housed in the VBS with adult females. Although there were no overt differences between PCVS and NS male offspring prior to VBS housing, a greater percentage of PCVS males became SUB. However, the depressive-like phenotype of SUB males was not exacerbated in PCVS males; rather, they appeared to better cope with SUB status than NS SUB males. They had lower basal plasma corticosterone than NS SUB males at the end of VBS housing. In situ hybridization for CRH in the PVN and CeA did not reveal any prenatal treatment or status effects, while NPY expression was higher within the MeA of dominant and subordinate males exposed to the VBS in comparison with controls, but with no effect of prenatal treatment. These data suggest that prenatal chronic variable stress may confer resilience to offspring when exposed to social stress in adulthood.
Asunto(s)
Adaptación Psicológica , Dominación-Subordinación , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/psicología , Resiliencia Psicológica , Estrés Psicológico/metabolismo , Glándulas Suprarrenales/patología , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Corticosterona/sangre , Depresión/etiología , Femenino , Vivienda para Animales , Masculino , Tamaño de los Órganos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Pruebas Psicológicas , ARN Mensajero/metabolismo , Ratas Long-Evans , Estrés Psicológico/complicaciones , Estrés Psicológico/patología , Testosterona/sangre , Timo/patologíaRESUMEN
Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor-expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.
Asunto(s)
Glucosa/metabolismo , Leptina/fisiología , Neuronas/fisiología , Sistema Nervioso Simpático , Adipocitos/fisiología , Animales , Conducta Animal , Glucemia/metabolismo , Encéfalo/fisiología , Femenino , Prueba de Tolerancia a la Glucosa , Hiperglucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor , Fenotipo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Leptina/fisiologíaRESUMEN
Leptin is an adipocytokine that circulates in proportion to body fat to signal the repletion of long-term energy stores. Leptin acts via its receptor, LepRb, on specialized neuronal populations in the brain (mainly in the hypothalamus and brainstem) to alter motivation and satiety, as well as to permit energy expenditure and appropriate glucose homeostasis. Decreased leptin, as with prolonged caloric restriction, promotes a powerful orexigenic signal, decreases energy use via a number of neuroendocrine and autonomic axes, and disrupts glucose homeostasis. Here, we review what is known about cellular leptin action and focus on the roles for specific populations of LepRb-expressing neurons for leptin action.