Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 28(12): e202103919, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-34878203

RESUMEN

In 2020 dimethyl sulfoxide (DMSO), the ever-present solvent for tin halide perovskites, was identified as an oxidant for SnII . Nonetheless, alternatives are lacking and few efforts have been devoted to replacing it. To understand this trend it is indispensable to learn the importance of DMSO on the development of tin halide perovskites. Its unique properties have allowed processing compact thin-films to be integrated into tin perovskite solar cells. Creative approaches for controlling the perovskite crystallization or increasing its stability to oxidation have been developed relying on DMSO-based inks. However, increasingly sophisticated strategies appear to lead the field to a plateau of power conversion efficiency in the range of 10-15 %. And, while DMSO-based formulations have performed in encouraging means so far, we should also start considering their potential limitations. In this concept article, we discuss the benefits and limitations of DMSO-based tin perovskite processing.

2.
Angew Chem Int Ed Engl ; 60(39): 21583-21591, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34228886

RESUMEN

Tin is the frontrunner for substituting toxic lead in perovskite solar cells. However, tin suffers the detrimental oxidation of SnII to SnIV . Most of reported strategies employ SnF2 in the perovskite precursor solution to prevent SnIV formation. Nevertheless, the working mechanism of this additive remains debated. To further elucidate it, we investigate the fluoride chemistry in tin halide perovskites by complementary analytical tools. NMR analysis of the precursor solution discloses a strong preferential affinity of fluoride anions for SnIV over SnII , selectively complexing it as SnF4 . Hard X-ray photoelectron spectroscopy on films shows the lower tendency of SnF4 than SnI4 to get included in the perovskite structure, hence preventing the inclusion of SnIV in the film. Finally, small-angle X-ray scattering reveals the strong influence of fluoride on the colloidal chemistry of precursor dispersions, directly affecting perovskite crystallization.

3.
ACS Appl Mater Interfaces ; 15(35): 41516-41524, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37626018

RESUMEN

We investigated triple-halide perovskite (THP) absorber layers with 5 mol % MAPbCl3 added to the double-halide perovskite (Cs0.22FA0.78)Pb(I0.85Br0.15)3. As a deposition method, a highly scalable printing technique, slot-die coating, with a subsequent annealing step was used. We found a strong power conversion efficiency (PCE) dependence of the corresponding solar cells on the annealing temperature. The device performance deteriorated when increasing the annealing temperature from 125 to 170 °C, mainly via losses in the open-circuit voltage (Voc) and in the fill factor (FF). To understand the mechanisms behind this performance loss, extensive characterizations were performed on both, the THP thin films and the completed solar-cell stacks, as a function of annealing temperature. Correlative scanning electron microscopy analyses, i.e., electron backscatter diffraction, energy-dispersive X-ray spectroscopy, and cathodoluminescence, in addition to X-ray diffraction and photoluminescence, confirmed the presence of PbI2 platelets on the surface of the THP thin films. Moreover, the area fraction of the PbI2 platelets on the film surface increased with increasing annealing temperature. The deteriorated device performance when the annealing temperature is increased from 125 to 170 °C is explained by the increased series resistance and increased interface recombination caused by the PbI2 platelets, leading to decreased Voc and FF values of the solar-cell devices. Thus, the correlative analyses provided insight into microscopic origins of the efficiency losses.

4.
ACS Appl Mater Interfaces ; 14(15): 17461-17469, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35385253

RESUMEN

The application of self-assembled molecules (SAMs) as a charge selective layer in perovskite solar cells has gained tremendous attention. As a result, highly efficient and stable devices have been released with stand-alone SAMs binding ITO substrates. However, further structural understanding of the effect of SAM in perovskite solar cells (PSCs) is required. Herein, three triphenylamine-based molecules with differently positioned methoxy substituents have been synthesized that can self-assemble onto the metal oxide layers that selectively extract holes. They have been effectively employed in p-i-n PSCs with a power conversion efficiency of up to 20%. We found that the perovskite deposited onto SAMs made by para- and ortho-substituted hole selective contacts provides large grain thin film formation increasing the power conversion efficiencies. Density functional theory predicts that para- and ortho-substituted position SAMs might form a well-ordered structure by improving the SAM's arrangement and in consequence enhancing its stability on the metal oxide surface. We believe this result will be a benchmark for the design of further SAMs.

5.
ACS Energy Lett ; 7(10): 3197-3203, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277134

RESUMEN

Controlling the crystallization of perovskite in a thin film is essential in making solar cells. Processing tin-based perovskite films from solution is challenging because of the uncontrollable faster crystallization of tin than the most used lead perovskite. The best performing devices are prepared by depositing perovskite from dimethyl sulfoxide because it slows down the assembly of the tin-iodine network that forms perovskite. However, while dimethyl sulfoxide seems the best solution to control the crystallization, it oxidizes tin during processing. This work demonstrates that 4-(tert-butyl) pyridine can replace dimethyl sulfoxide to control the crystallization without oxidizing tin. We show that tin perovskite films deposited from pyridine have a 1 order of magnitude lower defect density, which promotes charge mobility and photovoltaic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA