Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(19): 2005-2011, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38437497

RESUMEN

ABSTRACT: Antiprothrombin antibodies are found in antiphospholipid patients, but how they interact with prothrombin remains elusive. Prothrombin adopts closed and open forms. We recently discovered type I and type II antibodies and proposed that type I recognizes the open form. In this study, we report the discovery and structural and functional characterization in human plasma of a type I antibody, POmAb (prothrombin open monoclonal antibody). Using surface plasmon resonance and single-molecule spectroscopy, we show that POmAb interacts with kringle-1 of prothrombin, shifting the equilibrium toward the open form. Using single-particle cryogenic electron microscopy (cryo-EM), we establish that the epitope targeted by POmAb is in kringle-1, comprising an extended binding interface centered at residues R90-Y93. The 3.2-Å cryo-EM structure of the complex reveals that the epitope overlaps with the position occupied by the protease domain of prothrombin in the closed state, explaining the exclusive binding of POmAb to the open form. In human plasma, POmAb prolongs phospholipid-initiated and diluted Russell's viper venom clotting time, which could be partly rescued by excess phospholipids, indicating POmAb is an anticoagulant but exerts a weak lupus anticoagulant effect. These studies reveal the structural basis of prothrombin recognition by a type I antiphospholipid antibody and uncover an exciting new strategy to achieve anticoagulation in human plasma.


Asunto(s)
Anticuerpos Antifosfolípidos , Microscopía por Crioelectrón , Protrombina , Humanos , Anticuerpos Antifosfolípidos/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Coagulación Sanguínea , Epítopos/inmunología , Kringles , Unión Proteica , Protrombina/química , Protrombina/inmunología , Protrombina/metabolismo
2.
Blood ; 140(3): 222-235, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34986238

RESUMEN

COVID-19 is a primary respiratory illness that is frequently complicated by systemic involvement of the vasculature. Vascular involvement leads to an array of complications ranging from thrombosis to pulmonary edema secondary to loss of barrier function. This review will address the vasculopathy of COVID-19 with a focus on the role of the endothelium in orchestrating the systemic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The endothelial receptor systems and molecular pathways activated in the setting of COVID-19 and the consequences of these inflammatory and prothrombotic changes on endothelial cell function will be discussed. The sequelae of COVID-19 vascular involvement at the level of organ systems will also be addressed, with an emphasis on the pulmonary vasculature but with consideration of effects on other vascular beds. The dramatic changes in endothelial phenotypes associated with COVID-19 has enabled the identification of biomarkers that could help guide therapy and predict outcomes. Knowledge of vascular pathogenesis in COVID-19 has also informed therapeutic approaches that may control its systemic sequelae. Because our understanding of vascular response in COVID-19 continues to evolve, we will consider areas of controversy, such as the extent to which SARS-CoV-2 directly infects endothelium and the degree to which vascular responses to SARS-CoV-2 are unique or common to those of other viruses capable of causing severe respiratory disease. This conceptual framework describing how SARS-CoV-2 infection affects endothelial inflammation, prothrombotic transformation, and barrier dysfunction will provide a context for interpreting new information as it arises addressing the vascular complications of COVID-19.


Asunto(s)
COVID-19 , Trombosis , Enfermedades Vasculares , COVID-19/complicaciones , Humanos , Inflamación , SARS-CoV-2 , Trombosis/etiología , Enfermedades Vasculares/etiología
3.
Blood ; 139(1): 104-117, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34329392

RESUMEN

Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.


Asunto(s)
Plaquetas/metabolismo , Activación Plaquetaria , Proteínas Tirosina Quinasas/metabolismo , Trombosis/metabolismo , Animales , Plaquetas/patología , Eliminación de Gen , Células HEK293 , Humanos , Ratones Transgénicos , Proteínas Tirosina Quinasas/genética , Trombosis/patología
4.
J Biol Chem ; 298(8): 102217, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780832

RESUMEN

Human protein disulfide isomerase (PDI) is an essential redox-regulated enzyme required for oxidative protein folding. It comprises four thioredoxin domains, two catalytically active (a, a') and two inactive (b, b'), organized to form a flexible abb'a' U-shape. Snapshots of unbound oxidized and reduced PDI have been obtained by X-ray crystallography. Yet, how PDI's structure changes in response to the redox environment and inhibitor binding remains controversial. Here, we used multiparameter confocal single-molecule FRET to track the movements of the two catalytic domains with high temporal resolution. We found that at equilibrium, PDI visits three structurally distinct conformational ensembles, two "open" (O1 and O2) and one "closed" (C). We show that the redox environment dictates the time spent in each ensemble and the rate at which they exchange. While oxidized PDI samples O1, O2, and C more evenly and in a slower fashion, reduced PDI predominantly populates O1 and O2 and exchanges between them more rapidly, on the submillisecond timescale. These findings were not expected based on crystallographic data. Using mutational analyses, we further demonstrate that the R300-W396 cation-π interaction and active site cysteines dictate, in unexpected ways, how the catalytic domains relocate. Finally, we show that irreversible inhibitors targeting the active sites of reduced PDI did not abolish these protein dynamics but rather shifted the equilibrium toward the closed ensemble. This work introduces a new structural framework that challenges current views of PDI dynamics, helps rationalize its multifaceted role in biology, and should be considered when designing PDI-targeted therapeutics.


Asunto(s)
Proteína Disulfuro Isomerasas , Pliegue de Proteína , Cristalografía por Rayos X , Cisteína/química , Humanos , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo
5.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108551

RESUMEN

Implantable Cardiovascular Therapeutic Devices (CTD), while lifesaving, impart supraphysiologic shear stress to platelets, resulting in thrombotic and bleeding coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbß3 receptors via generation of Platelet-Derived MicroParticles (PDMPs). Here, we test the hypothesis that sheared PDMPs manifest phenotypical heterogeneity of morphology and receptor surface expression and modulate platelet hemostatic function. Human gel-filtered platelets were exposed to continuous shear stress. Alterations of platelet morphology were visualized using transmission electron microscopy. Surface expression of platelet receptors and PDMP generation were quantified by flow cytometry. Thrombin generation was quantified spectrophotometrically, and platelet aggregation was measured by optical aggregometry. Shear stress promotes notable alterations in platelet morphology and ejection of distinctive types of PDMPs. Shear-mediated microvesiculation is associated with the remodeling of platelet receptors, with PDMPs expressing significantly higher levels of adhesion receptors (αIIbß3, GPIX, PECAM-1, P-selectin, and PSGL-1) and agonist receptors (P2Y12 and PAR1). Sheared PDMPs promote thrombin generation and inhibit platelet aggregation induced by collagen and ADP. Sheared PDMPs demonstrate phenotypic heterogeneity as to morphology and defined patterns of surface receptors and impose a bidirectional effect on platelet hemostatic function. PDMP heterogeneity suggests that a range of mechanisms are operative in the microvesiculation process, contributing to CTD coagulopathy and posing opportunities for therapeutic manipulation.


Asunto(s)
Micropartículas Derivadas de Células , Hemostáticos , Humanos , Trombina/metabolismo , Micropartículas Derivadas de Células/metabolismo , Plaquetas/metabolismo , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Hemostáticos/metabolismo , Activación Plaquetaria , Estrés Mecánico
6.
Blood ; 136(24): 2824-2837, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32614949

RESUMEN

von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized in endothelial cells and stored in Weibel-Palade bodies (WPBs). Understanding the mechanisms underlying WPB biogenesis and exocytosis could enable therapeutic modulation of endogenous VWF, yet optimal targets for modulating VWF release have not been established. Because biogenesis of lysosomal related organelle-2 (BLOC-2) functions in the biogenesis of platelet dense granules and melanosomes, which like WPBs are lysosome-related organelles, we hypothesized that BLOC-2-dependent endolysosomal trafficking is essential for WPB biogenesis and sought to identify BLOC-2-interacting proteins. Depletion of BLOC-2 caused misdirection of cargo-carrying transport tubules from endosomes, resulting in immature WPBs that lack endosomal input. Immunoprecipitation of BLOC-2 identified the exocyst complex as a binding partner. Depletion of the exocyst complex phenocopied BLOC-2 depletion, resulting in immature WPBs. Furthermore, releasates of immature WPBs from either BLOC-2 or exocyst-depleted endothelial cells lacked high-molecular weight (HMW) forms of VWF, demonstrating the importance of BLOC-2/exocyst-mediated endosomal input during VWF maturation. However, BLOC-2 and exocyst showed very different effects on VWF release. Although BLOC-2 depletion impaired exocytosis, exocyst depletion augmented WPB exocytosis, indicating that it acts as a clamp. Exposure of endothelial cells to a small molecule inhibitor of exocyst, Endosidin2, reversibly augmented secretion of mature WPBs containing HMW forms of VWF. These studies show that, although BLOC-2 and exocyst cooperate in WPB formation, only exocyst serves to clamp WPB release. Exocyst function in VWF maturation and release are separable, a feature that can be exploited to enhance VWF release.


Asunto(s)
Exocitosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cuerpos de Weibel-Palade/metabolismo , Factor de von Willebrand/metabolismo , Endosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Limoninas/farmacología
7.
Chembiochem ; 22(1): 134-138, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32857455

RESUMEN

Folding of newly synthesized proteins in the endoplasmic reticulum is assisted by several families of enzymes. One such family is the protein disulfide isomerases (PDIs). PDIs are oxidoreductases, capable of forming new disulfide bonds or breaking existing ones. Structural information on PDIs unbound and bound to substrates is highly desirable for developing targeted therapeutics, yet it has been difficult to obtain by using traditional approaches because of their relatively large size and remarkable flexibility. Single-molecule FRET (smFRET) could be a powerful tool to study PDIs' structure and dynamics under conditions relevant to physiology, but its implementation has been hindered by technical challenges of position-specific fluorophore labeling. We have overcome this limitation by site-specifically engineering fluorescent dyes into human PDI, the founding member of the family. Proof-of-concept smFRET measurements of catalytically active PDI demonstrate, for the first time, the feasibility of this approach, expanding the toolkit for structural studies of PDIs.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteína Disulfuro Isomerasas/metabolismo , Biocatálisis , Colorantes Fluorescentes/química , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Proteína Disulfuro Isomerasas/química , Ingeniería de Proteínas
8.
Arterioscler Thromb Vasc Biol ; 40(9): 2114-2126, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32640902

RESUMEN

OBJECTIVE: Quantitative relationships between the extent of injury and thrombus formation in vivo are not well understood. Moreover, it has not been investigated how increased injury severity translates to blood-flow modulation. Here, we investigated interconnections between injury length, clot growth, and blood flow in a mouse model of laser-induced thrombosis. Approach and Results: Using intravital microscopy, we analyzed 59 clotting events collected from the cremaster arteriole of 14 adult mice. We regarded injury length as a measure of injury severity. The injury caused transient constriction upstream and downstream of the injury site resulting in a 50% reduction in arteriole diameter. The amount of platelet accumulation and fibrin formation did not depend on arteriole diameter or deformation but displayed an exponentially increasing dependence on injury length. The height of the platelet clot depended linearly on injury length and the arteriole diameter. Upstream arteriolar constriction correlated with delayed upstream velocity increase, which, in turn, determined downstream velocity. Before clot formation, flow velocity positively correlated with the arteriole diameter. After the onset of thrombus growth, flow velocity at the injury site negatively correlated with the arteriole diameter and with the size of the above-clot lumen. CONCLUSIONS: Injury severity increased platelet accumulation and fibrin formation in a persistently steep fashion and, together with arteriole diameter, defined clot height. Arterial constriction and clot formation were characterized by a dynamic change in the blood flow, associated with increased flow velocity.


Asunto(s)
Músculos Abdominales/irrigación sanguínea , Arteriolas/patología , Coagulación Sanguínea , Trombosis/patología , Lesiones del Sistema Vascular/patología , Animales , Arteriolas/lesiones , Arteriolas/fisiopatología , Velocidad del Flujo Sanguíneo , Plaquetas/metabolismo , Constricción Patológica , Modelos Animales de Enfermedad , Fibrina/metabolismo , Microscopía Intravital , Masculino , Ratones , Microscopía Fluorescente , Índice de Severidad de la Enfermedad , Trombosis/sangre , Trombosis/fisiopatología , Factores de Tiempo , Lesiones del Sistema Vascular/sangre , Lesiones del Sistema Vascular/fisiopatología
9.
Arterioscler Thromb Vasc Biol ; 40(10): e262-e272, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814440

RESUMEN

OBJECTIVE: The risk of thrombosis in myeloproliferative neoplasms, such as primary myelofibrosis varies depending on the type of key driving mutation (JAK2 [janus kinase 2], CALR [calreticulin], and MPL [myeloproliferative leukemia protein or thrombopoietin receptor]) and the accompanying mutations in other genes. In the current study, we sought to examine the propensity for thrombosis, as well as platelet activation properties in a mouse model of primary myelofibrosis induced by JAK2V617F (janus kinase 2 with valine to phenylalanine substitution on codon 617) mutation. Approach and Results: Vav1-hJAK2V617F transgenic mice show hallmarks of primary myelofibrosis, including significant megakaryocytosis and bone marrow fibrosis, with a moderate increase in red blood cells and platelet number. This mouse model was used to study responses to 2 models of vascular injury and to investigate platelet properties. Platelets derived from the mutated mice have reduced aggregation in response to collagen, reduced thrombus formation and thrombus size, as demonstrated using laser-induced or FeCl3-induced vascular injury models, and increased bleeding time. Strikingly, the mutated platelets had a significantly reduced number of dense granules, which could explain impaired ADP secretion upon platelet activation, and a diminished second wave of activation. CONCLUSIONS: Together, our study highlights for the first time the influence of a hyperactive JAK2 on platelet activation-induced ADP secretion and dense granule homeostasis, with consequent effects on platelet activation properties.


Asunto(s)
Coagulación Sanguínea , Plaquetas/enzimología , Traumatismos de las Arterias Carótidas/enzimología , Janus Quinasa 2/sangre , Megacariocitos/enzimología , Activación Plaquetaria , Mielofibrosis Primaria/enzimología , Trombosis/enzimología , Animales , Traumatismos de las Arterias Carótidas/sangre , Traumatismos de las Arterias Carótidas/genética , Modelos Animales de Enfermedad , Janus Quinasa 2/genética , Ratones Transgénicos , Mutación , Agregación Plaquetaria , Mielofibrosis Primaria/sangre , Mielofibrosis Primaria/genética , Trombopoyesis , Trombosis/sangre , Trombosis/genética
10.
Proc Natl Acad Sci U S A ; 115(5): E982-E991, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29343648

RESUMEN

Stimulation of protease-activated receptor 1 (PAR1) on endothelium by activated protein C (APC) is protective in several animal models of disease, and APC has been used clinically in severe sepsis and wound healing. Clinical use of APC, however, is limited by its immunogenicity and its anticoagulant activity. We show that a class of small molecules termed "parmodulins" that act at the cytosolic face of PAR1 stimulates APC-like cytoprotective signaling in endothelium. Parmodulins block thrombin generation in response to inflammatory mediators and inhibit platelet accumulation on endothelium cultured under flow. Evaluation of the antithrombotic mechanism showed that parmodulins induce cytoprotective signaling through Gßγ, activating a PI3K/Akt pathway and eliciting a genetic program that includes suppression of NF-κB-mediated transcriptional activation and up-regulation of select cytoprotective transcripts. STC1 is among the up-regulated transcripts, and knockdown of stanniocalin-1 blocks the protective effects of both parmodulins and APC. Induction of this signaling pathway in vivo protects against thromboinflammatory injury in blood vessels. Small-molecule activation of endothelial cytoprotection through PAR1 represents an approach for treatment of thromboinflammatory disease and provides proof-of-principle for the strategy of targeting the cytoplasmic surface of GPCRs to achieve pathway selective signaling.


Asunto(s)
Células Endoteliales/metabolismo , Inflamación/metabolismo , Receptor PAR-1/agonistas , Trombosis/metabolismo , Animales , Apoptosis , Factor Xa/metabolismo , Técnicas de Silenciamiento del Gen , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Microcirculación , Péptido Hidrolasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Transcripción Genética , Regulación hacia Arriba
11.
J Biol Chem ; 294(13): 4878-4888, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30670593

RESUMEN

ER protein 57 (ERp57), a thiol isomerase secreted from vascular cells, is essential for complete thrombus formation in vivo, but other extracellular ERp57 functions remain unexplored. Here, we employed a kinetic substrate-trapping approach to identify extracellular protein substrates of ERp57 in platelet-rich plasma. MS-based identification with immunochemical confirmation combined with gene ontology enrichment analysis revealed that ERp57 targets, among other substrates, components of the lectin pathway of complement activation: mannose-binding lectin, ficolin-2, ficolin-3, collectin-10, collectin-11, mannose-binding lectin-associated serine protease-1, and mannose-binding lectin-associated serine protease-2. Ficolin-3, the most abundant lectin pathway initiator in humans, circulates as disulfide-linked multimers of a monomer. ERp57 attenuated ficolin-3 ligand recognition and complement activation by cleaving intermolecular disulfide bonds in large ficolin-3 multimers, thereby reducing multimer size and ligand-binding affinity. We used MS to identify the disulfide-bonding pattern in ficolin-3 multimers and the disulfide bonds targeted by ERp57 and found that Cys6 and Cys23 in the N-terminal region of ficolin-3 form the intermolecular disulfide bonds in ficolin-3 multimers that are reduced by ERp57. Our results not only demonstrate that ERp57 can negatively regulate complement activation, but also identify a control mechanism for lectin pathway initiation in the vasculature. We conclude that extensive multimerization in large ficolin-3 multimers leads to a high affinity for ligands and strong complement-activating potential and that ERp57 suppresses complement activation by cleaving disulfide bonds in ficolin-3 and reducing its multimer size.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento , Glicoproteínas/metabolismo , Lectinas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Multimerización de Proteína , Proteolisis , Glicoproteínas/genética , Humanos , Lectinas/genética , Proteína Disulfuro Isomerasas/genética
12.
Org Biomol Chem ; 18(34): 6665-6681, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32812971

RESUMEN

The enzyme protein disulfide isomerase (PDI) is essential for the correct folding of proteins and the activation of certain cell surface receptors, and is a promising target for the treatment of cancer and thrombotic conditions. A previous high-throughput screen identified the commercial compound STK076545 as a promising PDI inhibitor. To confirm its activity and support further biological studies, a resynthesis was pursued of the reported ß-keto-amide with an N-alkylated pyridone at the α-position. Numerous conventional approaches were complicated by undesired fragmentations or rearrangements. However, a successful 5-step synthetic route was achieved using an aldol reaction with an α-pyridone allyl ester as a key step. An X-ray crystal structure of the final compound confirmed that the reported structure of STK076545 was achieved, however its lack of PDI activity and inconsistent spectral data suggest that the commercial structure was misassigned.

13.
J Allergy Clin Immunol ; 144(5): 1364-1376, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31201888

RESUMEN

BACKGROUND: CCAAT enhancer-binding protein epsilon (C/EBPε) is a transcription factor involved in late myeloid lineage differentiation and cellular function. The only previously known disorder linked to C/EBPε is autosomal recessive neutrophil-specific granule deficiency leading to severely impaired neutrophil function and early mortality. OBJECTIVE: The aim of this study was to molecularly characterize the effects of C/EBPε transcription factor Arg219His mutation identified in a Finnish family with previously genetically uncharacterized autoinflammatory and immunodeficiency syndrome. METHODS: Genetic analysis, proteomics, genome-wide transcriptional profiling by means of RNA-sequencing, chromatin immunoprecipitation (ChIP) sequencing, and assessment of the inflammasome function of primary macrophages were performed. RESULTS: Studies revealed a novel mechanism of genome-wide gain-of-function that dysregulated transcription of 464 genes. Mechanisms involved dysregulated noncanonical inflammasome activation caused by decreased association with transcriptional repressors, leading to increased chromatin occupancy and considerable changes in transcriptional activity, including increased expression of NLR family, pyrin domain-containing 3 protein (NLRP3) and constitutively expressed caspase-5 in macrophages. CONCLUSION: We describe a novel autoinflammatory disease with defective neutrophil function caused by a homozygous Arg219His mutation in the transcription factor C/EBPε. Mutated C/EBPε acts as a regulator of both the inflammasome and interferome, and the Arg219His mutation causes the first human monogenic neomorphic and noncanonical inflammasomopathy/immunodeficiency. The mechanism, including widely dysregulated transcription, is likely not unique for C/EBPε. Similar multiomics approaches should also be used in studying other transcription factor-associated diseases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Mutación con Ganancia de Función/genética , Síndromes de Inmunodeficiencia/genética , Inflamasomas/genética , Inflamación/genética , Macrófagos/metabolismo , Neutrófilos/fisiología , Anciano , Caspasas/genética , Caspasas/metabolismo , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamasomas/metabolismo , Macrófagos/patología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Linaje , Análisis de Secuencia de ARN , Regulación hacia Arriba
14.
Blood ; 140(21): 2188-2190, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36422862
15.
J Biol Chem ; 292(22): 9063-9074, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28364042

RESUMEN

Thiol isomerases such as protein-disulfide isomerase (PDI) direct disulfide rearrangements required for proper folding of nascent proteins synthesized in the endoplasmic reticulum. Identifying PDI substrates is challenging because PDI catalyzes conformational changes that cannot be easily monitored (e.g. compared with proteolytic cleavage or amino acid phosphorylation); PDI has multiple substrates; and it can catalyze either oxidation, reduction, or isomerization of substrates. Kinetic-based substrate trapping wherein the active site motif CGHC is modified to CGHA to stabilize a PDI-substrate intermediate is effective in identifying some substrates. A limitation of this approach, however, is that it captures only substrates that are reduced by PDI, whereas many substrates are oxidized by PDI. By manipulating the highly conserved -GH- residues in the CGHC active site of PDI, we created PDI variants with a slowed reaction rate toward substrates. The prolonged intermediate state allowed us to identify protein substrates that have biased affinities for either oxidation or reduction by PDI. Because extracellular PDI is critical for thrombus formation but its extracellular substrates are not known, we evaluated the ability of these bidirectional trapping PDI variants to trap proteins released from platelets and on the platelet surface. Trapped proteins were identified by mass spectroscopy. Of the trapped substrate proteins identified by mass spectroscopy, five proteins, cathepsin G, glutaredoxin-1, thioredoxin, GP1b, and fibrinogen, showed a bias for oxidation, whereas annexin V, heparanase, ERp57, kallekrein-14, serpin B6, tetranectin, and collagen VI showed a bias for reduction. These bidirectional trapping variants will enable more comprehensive identification of thiol isomerase substrates and better elucidation of their cellular functions.


Asunto(s)
Plaquetas/enzimología , Proteína Disulfuro Isomerasas/química , Dominio Catalítico , Humanos , Cinética , Proteína Disulfuro Isomerasas/metabolismo , Especificidad por Sustrato
16.
Blood ; 128(7): 893-901, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27357699

RESUMEN

Thiol isomerases are multifunctional enzymes that influence protein structure via their oxidoreductase, isomerase, and chaperone activities. These enzymes localize at high concentrations in the endoplasmic reticulum of all eukaryotic cells where they serve an essential function in folding nascent proteins. However, thiol isomerases can escape endoplasmic retention and be secreted and localized on plasma membranes. Several thiol isomerases including protein disulfide isomerase, ERp57, and ERp5 are secreted by and localize to the membranes of platelets and endothelial cells. These vascular thiol isomerases are released following vessel injury and participate in thrombus formation. Although most of the activities of vascular thiol isomerases that contribute to thrombus formation are yet to be defined at the molecular level, allosteric disulfide bonds that are modified by thiol isomerases have been described in substrates such as αIIbß3, αvß3, GPIbα, tissue factor, and thrombospondin. Vascular thiol isomerases also act as redox sensors. They respond to the local redox environment and influence S-nitrosylation of surface proteins on platelets and endothelial cells. Despite our rudimentary understanding of the mechanisms by which thiol isomerases control vascular function, the clinical utility of targeting them in thrombotic disorders is already being explored in clinical trials.


Asunto(s)
Vasos Sanguíneos/enzimología , Proteína Disulfuro Isomerasas/metabolismo , Animales , Vasos Sanguíneos/patología , Hemostasis , Humanos , Modelos Biológicos , Oxidación-Reducción , Trombosis/enzimología , Trombosis/patología
18.
Curr Opin Hematol ; 24(5): 439-445, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28598864

RESUMEN

PURPOSE OF REVIEW: The present review will provide an overview of several recent advances in the field of vascular thiol isomerase function. RECENT FINDINGS: The initial observation that protein disulfide isomerase (PDI) functions in thrombus formation occurred approximately a decade ago. At the time, there was little understanding regarding how PDI or other vascular thiol isomerases contribute to thrombosis. Although this problem is far from solved, the past few years have seen substantial progress in several areas that will be reviewed in this article. The relationship between PDI structure and its function has been investigated and applied to identify domains of PDI that are critical for thrombus formation. The mechanisms that direct thiol isomerase storage and release from platelets and endothelium have been studied. New techniques including kinetic-based trapping have identified substrates that vascular thiol isomerases modify during thrombus formation. Novel inhibitors of thiol isomerases have been developed that are useful both as tools to interrogate PDI function and as potential therapeutics. Human studies have been conducted to measure circulating PDI in disease states and evaluate the effect of oral administration of a PDI inhibitor on ex-vivo thrombin generation. SUMMARY: Current findings indicate that thiol isomerase-mediated disulfide bond modification in receptors and plasma proteins is an important layer of control of thrombosis and vascular function more generally.


Asunto(s)
Plaquetas/enzimología , Endotelio Vascular/enzimología , Inhibidores Enzimáticos/uso terapéutico , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/sangre , Trombosis , Administración Oral , Animales , Humanos , Proteína Disulfuro Isomerasas/química , Relación Estructura-Actividad , Trombosis/tratamiento farmacológico , Trombosis/enzimología
20.
J Biol Chem ; 291(52): 26598-26612, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27803165

RESUMEN

Integrins function as bi-directional signaling transducers that regulate cell-cell and cell-matrix signals across the membrane. A key modulator of integrin activation is talin, a large cytoskeletal protein that exists in an autoinhibited state in quiescent cells. Talin is a large 235-kDa protein composed of an N-terminal 45-kDa FERM (4.1, ezrin-, radixin-, and moesin-related protein) domain, also known as the talin head domain, and a series of helical bundles known as the rod domain. The talin head domain consists of four distinct lobes designated as F0-F3. Integrin binding and activation are mediated through the F3 region, a critically regulated domain in talin. Regulation of the F3 lobe is accomplished through autoinhibition via anti-parallel dimerization. In the anti-parallel dimerization model, the rod domain region of one talin molecule binds to the F3 lobe on an adjacent talin molecule, thus achieving the state of autoinhibition. Platelet functionality requires integrin activation for adherence and thrombus formation, and thus regulation of talin presents a critical node where pharmacological intervention is possible. A major mechanism of integrin activation in platelets is through heterotrimeric G protein signaling regulating hemostasis and thrombosis. Here, we provide evidence that switch region 2 (SR2) of the ubiquitously expressed G protein (Gα13) directly interacts with talin, relieves its state of autoinhibition, and triggers integrin activation. Biochemical analysis of Gα13 shows SR2 binds directly to the F3 lobe of talin's head domain and competes with the rod domain for binding. Intramolecular FRET analysis shows Gα13 can relieve autoinhibition in a cellular milieu. Finally, a myristoylated SR2 peptide shows demonstrable decrease in thrombosis in vivo Altogether, we present a mechanistic basis for the regulation of talin through Gα13.


Asunto(s)
Plaquetas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Proteínas de la Membrana/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Talina/antagonistas & inhibidores , Animales , Sitios de Unión , Adhesión Celular , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Humanos , Ratones , Modelos Moleculares , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Unión Proteica , Talina/metabolismo , Trombosis/metabolismo , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA