RESUMEN
BACKGROUND: Neutrophils are key mediators of inflammation during acute liver injury (ALI). Emerging evidence suggests that they also contribute to injury resolution and tissue repair. However, the different neutrophil subsets involved in these processes and their kinetics are undefined. Herein, we characterized neutrophil kinetics and heterogeneity during ALI. METHODS: We used the carbon tetrachloride model of ALI and employed flow cytometry, tissue imaging, and quantitative RT-PCR to characterize intrahepatic neutrophils during the necroinflammatory early and late repair phases of the wound healing response to ALI. We FACS sorted intrahepatic neutrophils at key time points and examined their transcriptional profiles using RNA-sequencing. Finally, we evaluated neutrophil protein translation, mitochondrial function and metabolism, reactive oxygen species content, and neutrophil extracellular traps generation. RESULTS: We detected 2 temporarily distinct waves of neutrophils during (1) necroinflammation (at 24 hours after injury) and (2) late repair (at 72 hours). Early neutrophils were proinflammatory, characterized by: (1) upregulation of inflammatory cytokines, (2) activation of the noncanonical NF-κB pathway, (3) reduction of protein translation, (4) decreased oxidative phosphorylation, and (5) higher propensity to generate reactive oxygen species and neutrophil extracellular traps. In contrast, late neutrophils were prorepair and enriched in genes and pathways associated with tissue repair and angiogenesis. Finally, early proinflammatory neutrophils were characterized by the expression of a short isoform of C-X-C chemokine receptor 5, while the late prorepair neutrophils were characterized by the expression of C-X-C chemokine receptor 4. CONCLUSIONS: This study underscores the phenotypic and functional heterogeneity of neutrophils and their dual role in inflammation and tissue repair during ALI.
Asunto(s)
Neutrófilos , Animales , Neutrófilos/inmunología , Neutrófilos/metabolismo , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino , Especies Reactivas de Oxígeno/metabolismo , Hígado/patología , Hígado/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Citocinas/metabolismo , Trampas Extracelulares/metabolismoRESUMEN
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Asunto(s)
Hígado , Macrófagos , Macrófagos del Hígado , Hepatocitos , Células MieloidesRESUMEN
BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a major health problem with complex pathogenesis. Although sex differences in NAFLD pathogenesis have been reported, the mechanisms underlying such differences remain understudied. Interleukin (IL)22 is a pleiotropic cytokine with both protective and/or pathogenic effects during liver injury. IL22 was shown to be hepatoprotective in NAFLD-related liver injury. However, these studies relied primarily on exogenous administration of IL22 and did not examine the sex-dependent effect of IL22. Here, we sought to characterize the role of endogenous IL22-receptor signaling during NAFLD-induced liver injury in males and females. METHODS: We used immunofluorescence, flow cytometry, histopathologic assessment, and gene expression analysis to examine IL22 production and characterize the intrahepatic immune landscape in human subjects with NAFLD (n = 20; 11 men and 9 women) and in an in vivo Western high-fat diet-induced NAFLD model in IL22RA knock out mice and their wild-type littermates. RESULTS: Examination of publicly available data sets from 2 cohorts with NAFLD showed increased hepatic IL22 gene expression in females compared with males. Furthermore, our immunofluorescence analysis of liver sections from NAFLD subjects (n = 20) showed increased infiltration of IL22-producing cells in females. Similarly, IL22-producing cells were increased in wild-type female mice with NAFLD and the hepatic IL22/IL22 binding protein messenger RNA ratio correlated with expression of anti-apoptosis genes. The lack of endogenous IL22-receptor signaling (IL22RA knockout) led to exacerbated liver damage, inflammation, apoptosis, and liver fibrosis in female, but not male, mice with NAFLD. CONCLUSIONS: Our data suggest a sex-dependent hepatoprotective antiapoptotic effect of IL22-receptor signaling during NAFLD-related liver injury in females.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Femenino , Humanos , Masculino , Ratones , Animales , Receptores de Interleucina/genética , Transducción de Señal , Cirrosis Hepática , Ratones NoqueadosRESUMEN
Macrophages are key regulators of inflammation and repair, but their heterogeneity and multiple roles in the liver are not fully understood. We aimed herein to map the intrahepatic macrophage populations and their function(s) during acute liver injury. We used flow cytometry, gene expression analysis, multiplex-immunofluorescence, 3D-reconstruction, and spatial image analysis to characterize the intrahepatic immune landscape in mice post-CCl4-induced acute liver injury during three distinct phases: necroinflammation, and early and late repair. We observed hepatocellular necrosis and a reduction in liver resident lymphocytes during necroinflammation accompanied by the infiltration of circulating myeloid cells and upregulation of inflammatory cytokines. These parameters returned to baseline levels during the repair phase while pro-repair chemokines were upregulated. We identified resident CLEC4F+ Kupffer cells (KCs) and infiltrating IBA1+CLEC4F- monocyte-derived macrophages (MoMFs) as the main hepatic macrophage populations during this response to injury. While occupying most of the necrotic area, KCs and MoMFs exhibited distinctive kinetics, distribution and morphology at the site of injury. The necroinflammation phase was characterized by low levels of KCs and a remarkable invasion of MoMFs suggesting their potential role in phagoctosing necrotic hepatocytes, while opposite kinetics/distribution were observed during repair. During the early repair phase, yolksac - derived KCs were restored, whereas MoMFs diminished gradually then dissipated during late repair. MoMFs interacted with hepatic stellate cells during the necroinflammatory and early repair phases, potentially modulating their activation state and influencing their fibrogenic and pro-repair functions that are critical for wound healing. Altogether, our study reveals novel and distinct spatial and temporal distribution of KCs and MoMFs and provides insights into their complementary roles during acute liver injury.
Asunto(s)
Macrófagos del Hígado , Hígado , Animales , Quimiocinas/metabolismo , Citocinas/metabolismo , Hígado/lesiones , Hígado/metabolismo , Macrófagos , RatonesRESUMEN
The immune landscape of the tumor microenvironment (TME) is a determining factor in cancer progression and response to therapy. Specifically, the density and the location of immune cells in the TME have important diagnostic and prognostic values. Multiomic profiling of the TME has exponentially increased our understanding of the numerous cellular and molecular networks regulating tumor initiation and progression. However, these techniques do not provide information about the spatial organization of cells or cell-cell interactions. Affordable, accessible, and easy to execute multiplexing techniques that allow spatial resolution of immune cells in tissue sections are needed to complement single cell-based high-throughput technologies. Here, we describe a strategy that integrates serial imaging, sequential labeling, and image alignment to generate virtual multiparameter slides of whole tissue sections. Virtual slides are subsequently analyzed in an automated fashion using user-defined protocols that enable identification, quantification, and mapping of cell populations of interest. The image analysis is done, in this case using the analysis modules Tissuealign, Author, and HISTOmap. We present an example where we applied this strategy successfully to one clinical specimen, maximizing the information that can be obtained from limited tissue samples and providing an unbiased view of the TME in the entire tissue section.
Asunto(s)
Leucocitos/patología , Microambiente Tumoral/inmunología , Anticuerpos Antineoplásicos/inmunología , Antígenos de Neoplasias/inmunología , Automatización , Calor , Humanos , Procesamiento de Imagen Asistido por Computador , Adhesión en Parafina , Coloración y Etiquetado , Células del Estroma/metabolismo , Fijación del TejidoRESUMEN
Inflammatory bowel disease (IBD) involves interaction between host genetic factors and environmental triggers. CCDC88B maps within one IBD risk locus on human chromosome 11q13. Here we show that CCDC88B protein increases in the colon during intestinal injury, concomitant with an influx of CCDC88B+lymphoid and myeloid cells. Loss of Ccdc88b protects against DSS-induced colitis, with fewer pathological lesions and reduced intestinal inflammation in Ccdc88b-deficient mice. In a T cell transfer model of colitis, Ccdc88b mutant CD4+ T cells do not induce colitis in immunocompromised hosts. Expression of human CCDC88B RNA and protein is higher in IBD patient colons than in control colon tissue. In human CD14+ myeloid cells, CCDC88B is regulated by cis-acting variants. In a cohort of patients with Crohn's disease, CCDC88B expression correlates positively with disease risk. These findings suggest that CCDC88B has a critical function in colon inflammation and the pathogenesis of IBD.Hook-related protein family member CCDC88b is encoded by a locus that has been associated with inflammatory bowel disease. Here the authors show that Ccdc88b inactivation in T cells prevents colitis in a transfer model, and detect high colonic levels of CCDC88b in patients with Crohn disease or ulcerative colitis, identifying that expression correlates with disease risk.
Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Colitis/patología , Enfermedades Inflamatorias del Intestino/patología , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colon/metabolismo , Colon/patología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Sulfato de Dextran/toxicidad , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Células Mieloides/metabolismo , Células Mieloides/patología , Polimorfismo de Nucleótido Simple , Linfocitos T/metabolismo , Linfocitos T/patologíaRESUMEN
Tungsten is a naturally occurring metal that increasingly is being incorporated into industrial goods and medical devices, and is recognized as an emerging contaminant. Tungsten preferentially and rapidly accumulates in murine bone in a concentration-dependent manner; however the effect of tungsten deposition on bone biology is unknown. Other metals alter bone homeostasis by targeting bone marrow-derived mesenchymal stromal cell (MSC) differentiation, thus, we investigated the effects of tungsten on MSCsin vitroandin vivoIn vitro, tungsten shifted the balance of MSC differentiation by enhancing rosiglitazone-induced adipogenesis, which correlated with an increase in adipocyte content in the bone of tungsten-exposed, young, male mice. Conversely, tungsten inhibited osteogenesis of MSCsin vitro; however, we found no evidence that tungsten inhibited osteogenesisin vivo Interestingly, two factors known to influence adipogenesis are sex and age of mice. Both female and older mice have enhanced adipogenesis. We extended our study and exposed young female and adult (9-month) male and female mice to tungsten for 4 weeks. Although tungsten accumulated to a similar extent in young female mice, it did not promote adipogenesis. Interestingly, tungsten did not accumulate in the bone of older mice; it was undetectable in adult male mice, and just above the limit of detect in adult female mice. Surprisingly, tungsten enhanced adipogenesis in adult female mice. In summary, we found that tungsten alters bone homeostasis by altering differentiation of MSCs, which could have significant implications for bone quality, but is highly dependent upon sex and age.
Asunto(s)
Adipogénesis/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Fémur/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Caracteres Sexuales , Tungsteno/toxicidad , Envejecimiento/metabolismo , Animales , Médula Ósea/metabolismo , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/farmacocinética , Femenino , Fémur/metabolismo , Fémur/patología , Técnicas In Vitro , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL , Osteogénesis/efectos de los fármacos , Tungsteno/farmacocinéticaRESUMEN
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.
Asunto(s)
Arsénico/efectos adversos , Aterosclerosis/inducido químicamente , Aterosclerosis/patología , Endotelio Vascular/patología , Contaminantes Ambientales/efectos adversos , Monocitos/efectos de los fármacos , Monocitos/patología , Animales , Antioxidantes/farmacología , Aterosclerosis/metabolismo , Adhesión Celular , Línea Celular , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Técnicas de Cultivo de Órganos , Activación Plaquetaria/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismoRESUMEN
Arsenic exposure has been linked to an increased incidence of atherosclerosis. Previously, we have shown in vitro and in vivo that arsenic inhibits transcriptional activation of the liver X receptors (LXRs), key regulators of lipid homeostasis. Therefore, we evaluated the role of LXRα in arsenic-induced atherosclerosis using the apoE(-/-) mouse model. Indeed, deletion of LXRα protected apoE(-/-) mice against the proatherogenic effects of arsenic. We have previously shown that arsenic changes the plaque composition in apoE(-/-) mice. Arsenic decreased collagen content in the apoE(-/-) model, and we have observed the same diminution in LXRα(-/-)apoE(-/-) mice. However, the collagen-producing smooth muscle cells (SMCs) were decreased in apoE(-/-), but increased in LXRα(-/-)apoE(-/-). Although transcriptional activation of collagen remained the same in SMC from both genotypes, arsenic-exposed LXRα(-/-)apoE(-/-) plaques had increased matrix metalloproteinase activity compared with both control LXRα(-/-)apoE(-/-) and apoE(-/-), which could be responsible for both the decrease in plaque collagen and the SMC invasion. In addition, arsenic increased plaque lipid accumulation in both genotypes. However, macrophages, the cells known to retain lipid within the plaque, were unchanged in arsenic-exposed apoE(-/-) mice, but decreased in LXRα(-/-)apoE(-/-). We confirmed in vitro that these cells retained more lipid following arsenic exposure and are more sensitive to apoptosis than apoE(-/-). Mice lacking LXRα are resistant to arsenic-enhanced atherosclerosis, but arsenic-exposed LXRα(-/-)apoE(-/-) mice still present a different plaque composition pattern than the arsenic-exposed apoE(-/-) mice.