Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain ; 145(9): 2982-2990, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36001414

RESUMEN

Alzheimer's disease is initiated by the toxic aggregation of amyloid-ß. Immunotherapeutics aimed at reducing amyloid beta are in clinical trials but with very limited success to date. Identification of orthogonal approaches for clearing amyloid beta may complement these approaches for treating Alzheimer's disease. In the brain, the astrocytic water channel Aquaporin 4 is involved in clearance of amyloid beta, and the fraction of Aquaporin 4 found perivascularly is decreased in Alzheimer's disease. Further, an unusual stop codon readthrough event generates a conserved C-terminally elongated variant of Aquaporin 4 (AQP4X), which is exclusively perivascular. However, it is unclear whether the AQP4X variant specifically mediates amyloid beta clearance. Here, using Aquaporin 4 readthrough-specific knockout mice that still express normal Aquaporin 4, we determine that this isoform indeed mediates amyloid beta clearance. Further, with high-throughput screening and counterscreening, we identify small molecule compounds that enhance readthrough of the Aquaporin 4 sequence and validate a subset on endogenous astrocyte Aquaporin 4. Finally, we demonstrate these compounds enhance brain amyloid-ß clearance in vivo, which depends on AQP4X. This suggests derivatives of these compounds may provide a viable pharmaceutical approach to enhance clearance of amyloid beta and potentially other aggregating proteins in neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Acuaporina 4/metabolismo , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Acuaporina 4/genética , Encéfalo/metabolismo , Codón de Terminación , Ratones , Enfermedades Neurodegenerativas/metabolismo
2.
Dis Model Mech ; 16(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712227

RESUMEN

Cell lines are indispensable models for modern biomedical research. A large part of their usefulness derives from the ability of a cell line to proliferate over multiple passages (often indefinitely), allowing multiple experiments to be performed. However, over time, cell line identity and purity can be compromised by human errors. Cross-contamination from other cell lines and complete misidentification are both possible. Routine cell line authentication is a necessary preventive measure and has become a requirement for many funding applications and publications. Short tandem repeat (STR) profiling is the most common method for cell line authentication and is usually carried out using standard polymerase chain reaction-capillary electrophoresis analysis (STR-CE). Here, we evaluated next-generation sequencing (NGS)-based STR profiling of human and mouse cell lines at 18 and 15 loci, respectively, in a high-throughput format. Using the Python program STRight, we demonstrate that NGS-based analysis (STR-NGS) is superior to standard STR-CE in terms of the ability to report the sequence context of repeat motifs, sensitivity and flexible multiplexing capability. STR-NGS is thus a valuable alternative for cell line authentication.


Asunto(s)
Autenticación de Línea Celular , Ratones , Animales , Humanos , Repeticiones de Microsatélite/genética , Línea Celular , Secuenciación de Nucleótidos de Alto Rendimiento
3.
medRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961498

RESUMEN

De novo mutations cause a variety of neurodevelopmental disorders including autism. Recent whole genome sequencing from individuals with autism has shown that many de novo mutations also occur in untranslated regions (UTRs) of genes, but it is difficult to predict from sequence alone which mutations are functional, let alone causal. Therefore, we developed a high throughput assay to screen the transcriptional and translational effects of 997 variants from 5'UTR patient mutations. This assay successfully enriched for elements that alter reporter translation, identifying over 100 potentially functional mutations from probands. Studies in patient-derived cell lines further confirmed that these mutations can alter protein production in individuals with autism, and some variants fall in genes known to cause syndromic forms of autism, suggesting a diagnosis for these individual patients. Since UTR function varies by cell type, we further optimized this high throughput assay to enable assessment of mutations in neurons in vivo. First, comparing in cellulo to in vivo results, we demonstrate neurons have different principles of regulation by 5'UTRs, consistent with a more robust mechanism for reducing the impact of RNA secondary structure. Finally, we discovered patient mutations specifically altering the translational activity of additional known syndromic genes LRRC4 and ZNF644 in neurons of the brain. Overall our results highlight a new approach for assessing the impact of 5'UTR mutations across cell types and suggest that some cases of neurodevelopmental disorder may be caused by such variants.

4.
Transl Psychiatry ; 12(1): 292, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869058

RESUMEN

Large scale human genetic studies have shown that loss of function (LoF) mutations in MYT1L are implicated in neurodevelopmental disorders (NDDs). Here, we provide an overview of the growing number of published MYT1L patient cases, and summarize prior studies in cells, zebrafish, and mice, both to understand MYT1L's molecular and cellular role during brain development and consider how its dysfunction can lead to NDDs. We integrate the conclusions from these studies and highlight conflicting findings to reassess the current model of the role of MYT1L as a transcriptional activator and/or repressor based on the biological context. Finally, we highlight additional functional studies that are needed to understand the molecular mechanisms underlying pathophysiology and propose key questions to guide future preclinical studies.


Asunto(s)
Trastornos del Neurodesarrollo , Pez Cebra , Animales , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Pez Cebra/genética
5.
Sci Rep ; 8(1): 888, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343825

RESUMEN

The T7 endonuclease 1 (T7E1) mismatch detection assay is a widely used method for evaluating the activity of site-specific nucleases, such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. To determine the accuracy and sensitivity of this assay, we compared the editing estimates derived by the T7E1 assay with that of targeted next-generation sequencing (NGS) in pools of edited mammalian cells. Here, we report that estimates of nuclease activity determined by T7E1 most often do not accurately reflect the activity observed in edited cells. Editing efficiencies of CRISPR-Cas9 complexes with similar activity by T7E1 can prove dramatically different by NGS. Additionally, we compared editing efficiencies predicted by the Tracking of Indels by Decomposition (TIDE) assay and the Indel Detection by Amplicon Analysis (IDAA) assay to that observed by targeted NGS for both cellular pools and single-cell derived clones. We show that targeted NGS, TIDE, and IDAA assays predict similar editing efficiencies for pools of cells but that TIDE and IDAA can miscall alleles in edited clones.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Línea Celular Tumoral , Endonucleasas/genética , Edición Génica , Humanos , Células K562 , Encuestas y Cuestionarios
6.
Biochem Res Int ; 2016: 2984081, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26955487

RESUMEN

Over 200,000 cases of invasive breast cancer are diagnosed annually; herbicide contaminants in local water sources may contribute to the growth of these cancers. GPR30, a G protein coupled receptor, was identified as a potential orphan receptor that may interact with triazine herbicides such as atrazine, one of the most commonly utilized chlorotriazines in agricultural practices in the United States. Our goal was to identify whether chlorotriazines affected the expression of GPR30. Two breast cancer cell lines, MDA-MB-231 and MCF-7, as well as one normal breast cell line, MCF-10A, were treated with a 100-fold range of atrazine, cyanazine, or simazine, with levels flanking the EPA safe level for each compound. Using real-time PCR, we assessed changes in GPR30 mRNA compared to a GAPDH control. Our results indicate that GPR30 expression increased in breast cancer cells at levels lower than the US EPA drinking water contamination limit. During this treatment, the viability of cells was unaltered. In contrast, treatment with chlorotriazines reduced the expression of GPR30 in noncancerous MCF-10A cells. Thus, our results indicate that cell milieu and potential to metastasize may play a role in the extent of GPR30 response to pesticide exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA