Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Opt Express ; 12(9): 5829-5843, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34692218

RESUMEN

Second harmonic generation (SHG) microscopy has emerged over the past two decades as a powerful tool for tissue characterization and diagnostics. Its main applications in medicine are related to mapping the collagen architecture of in-vivo, ex-vivo and fixed tissues based on endogenous contrast. In this work we present how H&E staining of excised and fixed tissues influences the extraction and use of image parameters specific to polarization-resolved SHG (PSHG) microscopy, which are known to provide quantitative information on the collagen structure and organization. We employ a theoretical collagen model for fitting the experimental PSHG datasets to obtain the second order susceptibility tensor elements ratios and the fitting efficiency. Furthermore, the second harmonic intensity acquired under circular polarization is investigated. The evolution of these parameters in both forward- and backward-collected SHG are computed for both H&E-stained and unstained tissue sections. Consistent modifications are observed between the two cases in terms of the fitting efficiency and the second harmonic intensity. This suggests that similar quantitative analysis workflows applied to PSHG images collected on stained and unstained tissues could yield different results, and hence affect the diagnostic accuracy.

2.
Biomed Opt Express ; 11(1): 186-199, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32010509

RESUMEN

Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard for the diagnostics of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both in-vivo or ex-vivo. Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained fixed tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained convolutional neural networks. Our results suggest that deep learning enhanced MPM for in-vivo skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.

3.
Sci Data ; 7(1): 169, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503988

RESUMEN

Modern histopathology workflows rely on the digitization of histology slides. The quality of the resulting digital representations, in the form of histology slide image mosaics, depends on various specific acquisition conditions and on the image processing steps that underlie the generation of the final mosaic, e.g. registration and blending of the contained image tiles. We introduce HISTOBREAST, an extensive collection of brightfield microscopy images that we collected in a principled manner under different acquisition conditions on Haematoxylin - Eosin (H&E) stained breast tissue. HISTOBREAST is comprised of neighbour image tiles and ensemble of mosaics composed from different combinations of the available image tiles, exhibiting progressively degraded quality levels. HISTOBREAST can be used to benchmark image processing and computer vision techniques with respect to their robustness to image modifications specific to brightfield microscopy of H&E stained tissues. Furthermore, HISTOBREAST can serve in the development of new image processing methods, with the purpose of ensuring robustness to typical image artefacts that raise interpretation problems for expert histopathologists and affect the results of computerized image analysis.


Asunto(s)
Mama/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Eosina Amarillenta-(YS) , Femenino , Hematoxilina , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA