Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Bot ; 107(1): 91-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31814117

RESUMEN

PREMISE: Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS: We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS: Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS: A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.


Asunto(s)
Briófitas , Evolución Molecular , Consenso , Funciones de Verosimilitud , Filogenia
2.
Dev Biol ; 419(1): 184-197, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-26808209

RESUMEN

Land plant bodies develop from meristems, groups of pluripotent stem cells, which may persist throughout the life of a plant or, alternatively, have a transitory existence. Early diverging land plants exhibit indeterminate (persistent) growth in their haploid gametophytic generation, whereas later diverging lineages exhibit indeterminate growth in their diploid sporophytic generation, raising the question of whether genetic machinery directing meristematic functions was co-opted between generations. Class III HD-Zip (C3HDZ) genes are required for the establishment and maintenance of shoot apical meristems in flowering plants. We demonstrate that in the moss Physcomitrella patens, C3HDZ genes are expressed in transitory meristems in both the gametophytic and sporophytic generations, but not in the persistent shoot meristem of the gametyphyte. Loss-of-function of P. patens C3HDZ was engineered using ectopic expression of miR166, an endogenous regulator of C3HDZ gene activity. Loss of C3HDZ gene function impaired the function of gametophytic transitory meristematic activity but did not compromise the functioning of the persistent shoot apical meristem during the gametophyte generation. These results argue against a wholesale co-option of meristematic gene regulatory networks from the gametophyte to the sporophyte during land plant evolution, instead suggesting that persistent meristems with a single apical cell in P. patens and persistent complex meristems in flowering plants are regulated by different genetic programs.


Asunto(s)
Bryopsida/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes Homeobox , Genes de Plantas , Proteínas de Homeodominio/fisiología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Secuencia de Bases , Bryopsida/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Leucina Zippers/genética , Estadios del Ciclo de Vida , Meristema/citología , Meristema/metabolismo , Familia de Multigenes , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , ARN de Planta/genética , Reproducción , Alineación de Secuencia , Especificidad de la Especie , Factores de Transcripción/genética
3.
Evol Dev ; 18(2): 116-26, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26763689

RESUMEN

Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants.


Asunto(s)
Evolución Molecular , Proteínas de Plantas/genética , Plantas/genética , Factores de Transcripción/genética , Evolución Biológica , Cycadopsida/clasificación , Cycadopsida/genética , Cycadopsida/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/metabolismo , Factores de Transcripción/metabolismo
4.
Mol Biol Evol ; 30(10): 2347-65, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23894141

RESUMEN

Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Embryophyta/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucina Zippers/genética , Streptophyta/genética , Secuencia de Bases , Codón , Embryophyta/clasificación , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/clasificación , Familia de Multigenes , Mutación , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Streptophyta/clasificación , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Phylogenet Evol ; 81: 159-73, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25263420

RESUMEN

It is commonly believed that gene duplications provide the raw material for morphological evolution. Both the number of genes and size of gene families have increased during the diversification of land plants. Several small proteins that regulate transcription factors have recently been identified in plants, including the LITTLE ZIPPER (ZPR) proteins. ZPRs are post-translational negative regulators, via heterodimerization, of class III Homeodomain Leucine Zipper (C3HDZ) proteins that play a key role in directing plant form and growth. We show that ZPR genes originated as a duplication of a C3HDZ transcription factor paralog in the common ancestor of euphyllophytes (ferns and seed plants). The ZPRs evolved by degenerative mutations resulting in loss all of the C3HDZ functional domains, except the leucine zipper that modulates dimerization. ZPRs represent a novel regulatory module of the C3HDZ network unique to the euphyllophyte lineage, and their origin correlates to a period of rapid morphological changes and increased complexity in land plants. The origin of the ZPRs illustrates the significance of gene duplications in creating developmental complexity during land plant evolution that likely led to morphological evolution.


Asunto(s)
Evolución Biológica , Duplicación de Gen , Proteínas de Plantas/genética , Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Briófitas/genética , Cycadopsida/genética , ADN de Plantas/genética , Proteínas de Unión al ADN/genética , Helechos/genética , Huperzia/genética , Leucina Zippers , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
6.
Plant Cell ; 22(7): 2113-30, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20628155

RESUMEN

In seed plants, leaves are born on radial shoots, but unlike shoots, they are determinate dorsiventral organs made of flat lamina. YABBY genes are found only in seed plants and in all cases studied are expressed primarily in lateral organs and in a polar manner. Despite their simple expression, Arabidopsis thaliana plants lacking all YABBY gene activities have a wide range of morphological defects in all lateral organs as well as the shoot apical meristem (SAM). Here, we show that leaves lacking all YABBY activities are initiated as dorsiventral appendages but fail to properly activate lamina programs. In particular, the activation of most CINCINNATA-class TCP genes does not commence, SAM-specific programs are reactivated, and a marginal leaf domain is not established. Altered distribution of auxin signaling and the auxin efflux carrier PIN1, highly reduced venation, initiation of multiple cotyledons, and gradual loss of the SAM accompany these defects. We suggest that YABBY functions were recruited to mold modified shoot systems into flat plant appendages by translating organ polarity into lamina-specific programs that include marginal auxin flow and activation of a maturation schedule directing determinate growth.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Hojas de la Planta/clasificación , Brotes de la Planta/clasificación , Arabidopsis/embriología , Expresión Génica , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Mutación , Hojas de la Planta/metabolismo , Semillas/crecimiento & desarrollo
7.
Annu Rev Plant Biol ; 59: 67-88, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18031217

RESUMEN

Leaves and stems are ultimately derived from the shoot apical meristem (SAM); leaves arise from the peripheral zone of the SAM and stem tissue is derived from both the peripheral and central zones of the SAM. Both the peripheral and central regions of the SAM are formed during embryogenesis when the basic body plan of the plant is established. Interplay between points of maximal concentration of auxin and specific patterns of transcription of both auxin-responsive transcription factors and other patterning genes subdivide the embryo along both the apical-basal and central-peripheral axes. Differential gene expression along these axes leads to the differentiation of tissues, lateral organs, meristems, and boundary regions, each with varying responsiveness to auxin. Subsequent shoot growth and development is a reiteration of basic patterning processes established during embryogenesis.


Asunto(s)
Brotes de la Planta/fisiología , Semillas/fisiología , Arabidopsis/crecimiento & desarrollo , Tipificación del Cuerpo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Plantas/embriología
8.
Nature ; 428(6982): 485-6, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15057819

RESUMEN

MicroRNAs are an abundant class of small RNAs that are thought to regulate the expression of protein-coding genes in plants and animals. Here we show that the target sequence of two microRNAs, known to regulate genes in the class-III homeodomain-leucine zipper (HD-Zip) gene family of the flowering plant Arabidopsis, is conserved in homologous sequences from all lineages of land plants, including bryophytes, lycopods, ferns and seed plants. We also find that the messenger RNAs from these genes are cleaved within the same microRNA-binding site in representatives of each land-plant group, as they are in Arabidopsis. Our results indicate not only that microRNAs mediate gene regulation in non-flowering as well as flowering plants, but also that the regulation of this class of plant genes dates back more than 400 million years.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , MicroARNs/metabolismo , Plantas/genética , Secuencia de Bases , MicroARNs/genética , Filogenia , Plantas/clasificación , Especificidad por Sustrato
9.
J Plant Res ; 123(1): 43-55, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19784716

RESUMEN

The fossil record reveals that seed plant leaves evolved from ancestral lateral branch systems. Over time, the lateral branch systems evolved to become determinate, planar and eventually laminar. Considering their evolutionary histories, it is instructive to compare the developmental genetics of shoot apical meristems (SAMs) and leaves in extant seed plants. Genetic experiments in model angiosperm species have assigned functions of meristem maintenance, specification of stem cell identity, boundary formation, polarity establishment and primordium initiation to specific genes. Investigation of roles of the same or homologous genes during leaf development has revealed strikingly similar functions in leaves compared to SAMs. Specifically, the marginal blastozone that characterizes many angiosperm leaves appears to function in a manner mechanistically similar to the SAM. We argue here that the similarities may be homologous due to descent from ancestral roles in an ancestral shoot system. Molecular aspects of SAM and leaf development in gymnosperms is largely neglected and could provide insight into seed plant leaf evolution.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Magnoliopsida/genética , Meristema/genética , Hojas de la Planta/genética , Evolución Biológica , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Cycadopsida/genética , Cycadopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Genes Homeobox/genética , Genes Homeobox/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/fisiología , Meristema/crecimiento & desarrollo , Modelos Biológicos , Morfogénesis/genética , Morfogénesis/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/crecimiento & desarrollo
10.
Curr Biol ; 16(19): 1911-7, 2006 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-17027487

RESUMEN

Vascular plants diverged more than 400 million years ago into two lineages, the lycophytes and the euphyllophytes . Leaf-like organs evolved independently in these two groups . Microphylls in lycophytes are hypothesized to have originated as lateral outgrowths of tissue that later became vascularized (the enation theory) or through the sterilization of sporangia (the sterilization hypothesis) . Megaphylls in euphyllophytes are thought to represent modified lateral branches . The fossil record also indicates that the seed plant megaphyll evolved uniquely in the ancestor of seed plants, independent of megaphylls in ferns, because seed plants evolved from leafless progymnosperm ancestors . Surprisingly, a recent study of KNOX and ARP gene expression in a lycophyte was reported to indicate recruitment of a similar mechanism for determinacy in both types of leaves . We examined the expression of Class III HD-Zip genes in the lycophyte Selaginella kraussiana and in two gymnosperms, Ginkgo and Pseudotsuga. Our data indicate that mechanisms promoting leaf initiation, vascularization, and polarity are quite different in lycophytes and seed plants, consistent with the hypotheses that megaphylls originated as lateral branches whereas microphylls originated as tissue outgrowths.


Asunto(s)
Evolución Biológica , Proteínas de Homeodominio/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ginkgo biloba/anatomía & histología , Ginkgo biloba/crecimiento & desarrollo , Ginkgo biloba/metabolismo , Proteínas de Homeodominio/genética , Hibridación in Situ , Leucina Zippers , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Pseudotsuga/anatomía & histología , Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/metabolismo , Selaginellaceae/anatomía & histología , Selaginellaceae/crecimiento & desarrollo , Selaginellaceae/metabolismo , Factores de Transcripción/genética
11.
Sex Plant Reprod ; 22(4): 277-89, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20033449

RESUMEN

Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development. ap2 mutant seeds undergo an extended period of rapid endosperm growth early in development relative to wild type. This early expanded growth period in ap2 seeds is associated with delayed endosperm cellularization and overgrowth of the endosperm central vacuole. The subsequent period of moderate endosperm growth is also extended in ap2 seeds largely due to persistent cell divisions at the endosperm periphery. The effect of AP2 on endosperm development is mediated by different mechanisms than parent-of-origin effects on seed size observed in interploidy crosses. Seed coat development is affected; integument cells of ap2 mutants are more elongated than wild type. We conclude that endosperm overgrowth and/or integument cell elongation create a larger postfertilization embryo sac into which the ap2 embryo can grow. Morphological development of the embryo is initially delayed in ap2 compared with wild-type seeds, but ap2 embryos become larger than wild type after the bent-cotyledon stage of development. ap2 embryos are able to fill the enlarged postfertilization embryo sac, because they undergo extended periods of cell proliferation and seed filling. We discuss potential mechanisms by which maternally acting AP2 influences development of the zygotic embryo and endosperm to repress seed size.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Semillas/química , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endospermo/química , Endospermo/embriología , Endospermo/genética , Endospermo/metabolismo , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Semillas/embriología , Semillas/genética , Semillas/metabolismo
12.
Curr Biol ; 13(20): 1768-74, 2003 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-14561401

RESUMEN

BACKGROUND: Shoots of all land plants have a radial pattern that can be considered to have an adaxial (central)-abaxial (peripheral) polarity. In Arabidopsis, gain-of-function alleles of PHAVOLUTA and PHABULOSA, members of the class III HD-ZIP gene family, result in adaxialization of lateral organs. Conversely, loss-of-function alleles of the KANADI genes cause an adaxialization of lateral organs. Thus, the class III HD-ZIP and KANADI genes comprise a genetic system that patterns abaxial-adaxial polarity in lateral organs produced from the apical meristem. RESULTS: We show that gain-of-function alleles of REVOLUTA, another member of the class III HD-ZIP gene family, are characterized by adaxialized lateral organs and alterations in the radial patterning of vascular bundles in the stem. The gain-of-function phenotype can be obtained by changing only the REVOLUTA mRNA sequence and without changing the protein sequence; this finding indicates that this phenotype is likely mediated through an interference with microRNA binding. Loss of KANADI activity results in similar alterations in vascular patterning as compared to REVOLUTA gain-of-function alleles. Simultaneous loss-of-function of PHABULOSA, PHAVOLUTA, and REVOLUTA abaxializes cotyledons, abolishes the formation of the primary apical meristem, and in severe cases, eliminates bilateral symmetry; these phenotypes implicate these three genes in radial patterning of both embryonic and postembryonic growth. CONCLUSIONS: Based on complementary vascular and leaf phenotypes of class III HD-ZIP and KANADI mutants, we propose that a common genetic program dependent upon miRNAs governs adaxial-abaxial patterning of leaves and radial patterning of stems in the angiosperm shoot. This finding implies that a common patterning mechanism is shared between apical and vascular meristems.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Tipificación del Cuerpo/genética , MicroARNs/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Tipificación del Cuerpo/fisiología , Perfilación de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Factores de Transcripción/genética
13.
Genetics ; 173(1): 373-88, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16489224

RESUMEN

Land plants underwent tremendous evolutionary change following the divergence of the ancestral lineage from algal relatives. Several important developmental innovations appeared as the embryophyte clade diversified, leading to the appearance of new organs and tissue types. To understand how these changes came about, we need to identify the fundamental genetic developmental programs that are responsible for growth, patterning, and differentiation and describe how these programs were modified and elaborated through time to produce novel morphologies. Class III homeodomain-leucine zipper (class III HD-Zip) genes, identified in the model plant Arabidopsis thaliana, provide good candidates for basic land plant patterning genes. We show that these genes may have evolved in a common ancestor of land plants and their algal sister group and that the gene family has diversified as land plant lineages have diversified. Phylogenetic analysis, expression data from nonflowering lineages, and evidence from Arabidopsis and other flowering plants indicate that class III HD-Zip genes acquired new functions in sporophyte apical growth, vascular patterning and differentiation, and leaf development. Modification of expression patterns that accompanied diversification of class III HD-Zip genes likely played an important role in the evolution of land plant form.


Asunto(s)
Evolución Molecular , Genes de Plantas/genética , Proteínas de Homeodominio/genética , Leucina Zippers/genética , Secuencia de Bases , Teorema de Bayes , Exones/genética , Regulación de la Expresión Génica de las Plantas , Ginkgo biloba/genética , Intrones/genética , MicroARNs/genética , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/citología , Brotes de la Planta/citología , Pseudotsuga/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selaginellaceae/genética , Alineación de Secuencia
14.
Evolution ; 56(11): 2112-25, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12487343

RESUMEN

Seed dormancy plays an important role in germination ecology and seed plant evolution. Morphological seed dormancy is caused by an underdeveloped embryo that must mature prior to germination. It has been suggested that the presence of an underdeveloped embryo is plesiomorphic among seed plants and that parallel directional change in embryo morphology has occurred separately in gymnosperms and in angiosperms. We test these hypotheses using original data on embryo morphology of key basal taxa, a published dataset, and the generalized least squares (GLS) method of ancestral character state reconstruction. Reconstructions for embryo to seed ratio (E:S) using family means for 179 families showed that E:S has increased between the ancestral angiosperm and almost all extant angiosperm taxa. Species in the rosid clade have particularly large embryos relative to the angiosperm ancestor. Results for the gymnosperms show a similar but smaller increase. There were no statistically significant differences in E:S between basal taxa and any derived group due to extremely large standard errors produced by GLS models. However, differences between reconstructed values for the angiosperm ancestor and more highly nested nodes are large and these results are robust to topological and branch-length manipulations. Our analysis supports the idea that the underdeveloped embryo is primitive among seed plants and that there has been a directional change in E:S within both angiosperms and gymnosperms. Our analysis suggests that dormancy enforced by an underdeveloped embryo is plesiomorphic among angiosperms and that nondormancy and other dormancy types probably evolved within the angiosperms. The shift in E:S was likely a heterochronic change, and has important implications for the life history of seed plants.


Asunto(s)
Evolución Biológica , Magnoliopsida/embriología , Semillas/fisiología , Magnoliopsida/clasificación , Magnoliopsida/fisiología , Modelos Biológicos , Filogenia , Semillas/citología
15.
Science ; 332(6032): 960-3, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21551031

RESUMEN

Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.


Asunto(s)
Evolución Biológica , Genoma de Planta , Selaginellaceae/genética , Bryopsida/genética , Chlamydomonas/química , Chlamydomonas/genética , Elementos Transponibles de ADN , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Magnoliopsida/química , Magnoliopsida/genética , MicroARNs/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/análisis , Edición de ARN , ARN de Planta/genética , Secuencias Repetitivas de Ácidos Nucleicos , Selaginellaceae/crecimiento & desarrollo , Selaginellaceae/metabolismo , Análisis de Secuencia de ADN
16.
Cell ; 129(2): 229-34, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17448980

RESUMEN

As more plant genome sequences become available, researchers are increasingly using comparative genomics to address some of the major questions in plant biology. Such questions include the evolution of photosynthesis and multicellularity, the developmental genetic changes responsible for alterations in body plan, and the origin of important plant innovations such as roots, leaves, and vascular tissue.


Asunto(s)
Evolución Biológica , Genómica , Plantas/genética , Genoma de Planta , Fotosíntesis , Filogenia , Plantas/anatomía & histología , Plantas/metabolismo
17.
Evolution ; 48(4): 1364-1370, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28564453

RESUMEN

The extreme isolation and mid-Pacific origin of the Hawaiian archipelago has ensured that all indigenous organisms have arrived via long-distance dispersal or have evolved from successfully colonizing species. Although this isolation has also produced high rates of species endemism in angiosperms (89% or more), that rate in pteridophytes is considerably less (76%). The ratio of native species to the estimated number of original successful colonizing species in angiosperms (3.4) is more than double that for pteridophytes (1.6). One possible explanation for the lower speciation rate in pteridophytes is that populations of these species are more likely to experience interpopulational gene flow because of the great vagility of their wind-dispersed spores. We conducted isozymic surveys of populations from the island of Hawaii of the indigenous allotetraploid species Asplenium adiantum-nigrum, putatively derived from two strictly European diploid taxa. Our data support multiple hybrid origins for the populations surveyed, with a minimum of 3, and possibly as many as 17, discrete hybridization events having produced the genetic diversity observed. Since the parental taxa are not found in Hawaii, each hybrid lineage must have arrived in the archipelago independently of the others. Similar long-distance, repeated dispersal events may be occurring between insular and noninsular populations of other native pteridophytes in Hawaii and in other insular regions of the world, thus contributing to the relatively low rates of speciation and insular endemism in this ancient group of plants.

18.
Development ; 131(12): 2997-3006, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15169760

RESUMEN

Asymmetric development of plant lateral organs is initiated by a partitioning of organ primordia into distinct domains along their adaxial/abaxial axis. Two primary determinants of abaxial cell fate are members of the KANADI and YABBY gene families. Progressive loss of KANADI activity in loss-of-function mutants results in progressive transformation of abaxial cell types into adaxial ones and a correlated loss of lamina formation. Novel, localized planes of blade expansion occur in some kanadi loss-of-function genotypes and these ectopic lamina outgrowths are YABBY dependent. We propose that the initial asymmetric leaf development is regulated primarily by mutual antagonism between KANADI and PHB-like genes, which is translated into polar YABBY expression. Subsequently, polar YABBY expression contributes both to abaxial cell fate and to abaxial/adaxial juxtaposition-mediated lamina expansion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pérdida de Heterocigocidad , Mutagénesis , Hojas de la Planta/genética , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA