Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 286(1909): 20191104, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31455189

RESUMEN

Larval dispersal is a key process determining population connectivity, metapopulation dynamics, and community structure in benthic marine ecosystems, yet the biophysical complexity of dispersal is not well understood. In this study, we investigate the interaction between disperser phenotype and hydrodynamics on larval dispersal pathways, using a temperate reef fish species, Trachinops caudimaculatus. We assessed the influence of larval traits on depth distribution and dispersal outcomes by: (i) using 24-h depth-stratified ichthyoplankton sampling, (ii) quantifying individual phenotypes using larval growth histories extracted from the sagittal otoliths of individual larvae, and (iii) simulating potential dispersal outcomes based on the empirical distribution of larval phenotypes and an advanced biological-physical ocean model. We found T. caudimaculatus larvae were vertically stratified with respect to phenotype, with high-quality phenotypes found in the bottom two depth strata, and poor-quality phenotypes found primarily at the surface. Our model showed high- and average-quality larvae experienced significantly higher local retention (more than double) and self-recruitment, and travelled shorter distances relative to poor-quality larvae. As populations are only connected when dispersers survive long enough to reproduce, determining how larval phenotype influences dispersal outcomes will be important for improving our understanding of marine population connectivity and persistence.


Asunto(s)
Distribución Animal , Organismos Acuáticos , Ecosistema , Animales , Arrecifes de Coral , Peces , Larva , Fenotipo , Dinámica Poblacional , Reproducción
2.
Biol Lett ; 15(7): 20190272, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31288686

RESUMEN

The Earth is getting brighter at night, as artificial light at night (ALAN) continues to increase and extend its reach. Despite recent recognition of the damaging impacts of ALAN on terrestrial ecosystems, research on ALAN in marine systems is comparatively lacking. To further our understanding of the impacts of ALAN on marine organisms, this study examines how the reproductive fitness of the common clownfish Amphiprion ocellaris is influenced by the presence of ALAN. We assessed how exposure to low levels of ALAN affects (i) frequency of spawning, (ii) egg fertilization success, and (iii) hatching success of A. ocellaris under control (12 : 12 day-night) and treatment (12 : 12 day-ALAN) light regimes. While we found exposure to ALAN had no impact on the frequency of spawning or fertilization success, ALAN had dramatic effects on hatching. Amphiprion ocellaris eggs incubated in the presence of ALAN simply did not hatch, resulting in zero survivorship of offspring. These findings suggest ALAN can significantly reduce reproductive fitness in a benthic-spawning reef fish. Further research in this field is necessary to fully understand the extent of this impact on population and community dynamics in the wild.


Asunto(s)
Luz , Perciformes , Animales , Ecosistema , Peces
3.
Toxins (Basel) ; 16(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38393163

RESUMEN

While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.


Asunto(s)
Anémonas de Mar , Toxinas Biológicas , Animales , Anémonas de Mar/genética , Ponzoñas/genética , Toxinas Biológicas/genética , Transcriptoma , ARN
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220362, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37899007

RESUMEN

Despite 22% of the world's coastal regions experiencing some degree of light pollution, and biologically important artificial light at night (ALAN) reaching large portions of the seafloor (greater than 75%) near coastal developments, the impacts of ALAN on temperate and tropical reefs are still relatively unknown. Because many reef species have evolved in response to low-light nocturnal environments, consistent daily, lunar, and seasonal light cycles, and distinct light spectra, these impacts are likely to be profound. Recent studies have found ALAN can decrease reproductive success of fishes, alter predation rates of invertebrates and fishes, and impact the physiology and biochemistry of reef-building corals. In this paper, we integrate knowledge of the role of natural light in temperate and tropical reefs with a synthesis of the current literature on the impacts of ALAN on reef organisms to explore potential changes at the system level in reef communities exposed to ALAN. Specifically, we identify the direct impacts of ALAN on individual organisms and flow on effects for reef communities, and present potential scenarios where ALAN could significantly alter system-level dynamics, possibly even creating novel ecosystems. Lastly, we highlight large knowledge gaps in our understanding of the overall impact of ALAN on reef systems. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Asunto(s)
Antozoos , Ecosistema , Animales , Contaminación Lumínica , Ecología , Invertebrados , Peces/fisiología , Arrecifes de Coral
5.
UCL Open Environ ; 4: e036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37228454

RESUMEN

Terrestrial, marine and freshwater realms are inherently linked through ecological, biogeochemical and/or physical processes. An understanding of these connections is critical to optimise management strategies and ensure the ongoing resilience of ecosystems. Artificial light at night (ALAN) is a global stressor that can profoundly affect a wide range of organisms and habitats and impact multiple realms. Despite this, current management practices for light pollution rarely consider connectivity between realms. Here we discuss the ways in which ALAN can have cross-realm impacts and provide case studies for each example discussed. We identified three main ways in which ALAN can affect two or more realms: 1) impacts on species that have life cycles and/or stages in two or more realms, such as diadromous fish that cross realms during ontogenetic migrations and many terrestrial insects that have juvenile phases of the life cycle in aquatic realms; 2) impacts on species interactions that occur across realm boundaries, and 3) impacts on transition zones or ecosystems such as mangroves and estuaries. We then propose a framework for cross-realm management of light pollution and discuss current challenges and potential solutions to increase the uptake of a cross-realm approach for ALAN management. We argue that the strengthening and formalisation of professional networks that involve academics, lighting practitioners, environmental managers and regulators that work in multiple realms is essential to provide an integrated approach to light pollution. Networks that have a strong multi-realm and multi-disciplinary focus are important as they enable a holistic understanding of issues related to ALAN.

6.
Sci Total Environ ; 748: 141263, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32814286

RESUMEN

Small plastic particles are considered environmental pollutants and are highly concentrated in marine sediments. However, knowledge about plastic abundance within coral reef habitat and beach sediments surrounding remote inhabited coral islands is scarce. In this study, microplastic accumulation was investigated on a small inhabited coral island located in the Maldives. Sediments from 22 sampling sites across fore reef, reef flat, and beach environments were analysed for plastic particles <5 mm. Density separation and microscope enumeration revealed a total of 1244 individual microplastic pieces, in filamentous (49%) and fragmented (51%) forms, found across all sampling sites. High concentrations were recorded at all sites, however, there was no significant relationship between microplastic concentration or size across regions (inner atoll and outer atoll) or environments (fore reef, reef flat, and beach). Furthermore, concentrations of microplastic fragment and filament forms, total concentration, and the microplastic community, showed little correlation with sediment particle size. Our findings show microplastics are ubiquitous in marine sediments around a remote coral island, at sizes ingestible by marine organisms, raising concerns about potential effects of microplastic ingestion by coral reef species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA