Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Dairy Sci ; 103(7): 5793-5804, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32448585

RESUMEN

Astringency is the sensation of mouth drying and puckering, and it has also been described as a loss of lubrication in the mouth. Astringency is perceived as an increase in oral friction or roughness. Astringency caused by tannins and other polyphenols has been well documented and studied. Whey proteins are popular for their functional and nutritional quality, but they exhibit astringency, particularly under acidic conditions popular in high acid (pH 3.4) whey protein beverages. Acids cause astringency, but acidic protein beverages have higher astringency than acid alone. Whey proteins are able to interact with salivary proteins, which removes the lubricating saliva layer of the mouth. Whey proteins can also interact directly with epithelial tissue. These various mechanisms of astringency limit whey protein ingredient applications because astringency is undesirable to consumers. A better understanding of the causes of whey protein astringency will improve our ability to produce products that have high consumer liking and deliver excellent nutrition.


Asunto(s)
Bebidas/análisis , Gusto , Proteína de Suero de Leche/química , Humanos , Sensación
2.
J Dairy Sci ; 98(9): 5862-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26188582

RESUMEN

The residual annatto colorant in fluid Cheddar cheese whey is bleached to provide a neutral-colored final product. Currently, hydrogen peroxide (HP) and benzoyl peroxide are used for bleaching liquid whey. However, previous studies have shown that chemical bleaching causes off-flavor formation, mainly due to lipid oxidation and protein degradation. The objective of this study was to evaluate the efficacy of microfiltration (MF) on norbixin removal and to compare flavor and functionality of 80% whey protein concentrate (WPC80) from MF whey to WPC80 from whey bleached with HP or lactoperoxidase (LP). Cheddar cheese whey was manufactured from colored, pasteurized milk. The fluid whey was pasteurized and fat separated. Liquid whey was subjected to 4 different treatments: control (no bleaching; 50°C, 1 h), HP (250 mg of HP/kg; 50°C, 1 h), and LP (20 mg of HP/kg; 50°C, 1 h), or MF (microfiltration; 50°C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% concentrate. The entire experiment was replicated 3 times. Proximate analyses, color, functionality, descriptive sensory and instrumental volatile analysis were conducted on WPC80. The MF and HP- and LP-bleached WPC80 displayed a 39.5, 40.9, and 92.8% norbixin decrease, respectively. The HP and LP WPC80 had higher cardboard flavors and distinct cabbage flavor compared with the unbleached and MF WPC80. Volatile compound results were consistent with sensory results. The HP and LP WPC80 were higher in lipid oxidation compounds (especially heptanal, hexanal, pentanal, 1-hexen-3-one, 2-pentylfuran, and octanal) compared with unbleached and MF WPC80. All WPC80 had >85% solubility across the pH range of 3 to 7. The microstructure of MF gels determined by confocal laser scanning showed an increased protein particle size in the gel network. MF WPC80 also had larger storage modulus values, indicating higher gel firmness. Based on bleaching efficacy comparable to chemical bleaching with HP, flavor, and functionality results, MF is a viable alternative to chemical or enzymatic bleaching of fluid whey.


Asunto(s)
Color , Gusto , Proteína de Suero de Leche , Peróxido de Benzoílo/química , Blanqueadores/química , Carotenoides/química , Queso , Manipulación de Alimentos , Peróxido de Hidrógeno/química , Lactoperoxidasa/metabolismo , Pasteurización , Compuestos Orgánicos Volátiles/análisis , Suero Lácteo/química
3.
J Dairy Sci ; 98(3): 1502-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25597968

RESUMEN

Cheese can be modeled as a filled gel whereby milkfat globules are dispersed in a casein gel network. We determined the filler effects using Sephadex beads (GE Healthcare Life Sciences, Pittsburgh, PA) as a model filler particle. Ideally, such a model could be used to test novel filler particles to replace milkfat in low-fat cheese. Low-filler (6% particles), reduced-filler (16%), and full-filler (33%) cheeses were produced using either Sephadex beads of varying sizes (20 to 150 µm diameter) or milkfat. Small- and large-strain rheological tests were run on each treatment at 8, 12, and 18 wk after cheese manufacturing. Differences in rheological properties were caused primarily by the main effects of filler volume and type (milkfat vs. Sephadex), whereas filler size had no obvious effect. All treatments showed a decrease in deformability and an increase in firmness as filler volume increased above 25%, although the beads exhibited a greater reinforcing effect and greater energy recovery than milkfat.


Asunto(s)
Queso/análisis , Dextranos/química , Manipulación de Alimentos/métodos , Animales , Caseínas/química , Reología
4.
J Dairy Sci ; 96(9): 5522-31, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23871371

RESUMEN

This study compared the functional properties of serum protein concentrate (SPC) with whey protein concentrate (WPC) made from the same milk and with commercial WPC. The experimental SPC and WPC were produced at 34% or 80% protein from the same lot of milk. Protein contents of WPC and SPC were comparable; however, fat content was much lower in SPC compared with WPC and commercial WPC. The effect of drying methods (freeze vs. spray drying) was studied for 34% WPC and SPC. Few differences due to drying method were found in turbidity and gelation; however, drying method made a large difference in foam formation for WPC but not SPC. Between pH 3 and 7, SPC was found to have lower turbidity than WPC; however, protein solubility was similar between SPC and WPC. Foaming and gelation properties of SPC were better than those of WPC. Differences in functional properties may be explained by differences in composition and extent of denaturation or aggregation.


Asunto(s)
Proteínas de la Leche/química , Animales , Productos Lácteos , Tecnología de Alimentos/métodos , Liofilización , Geles/química , Leche/química , Proteína de Suero de Leche
5.
J Dairy Sci ; 95(6): 2848-62, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22612922

RESUMEN

Whey is a highly functional food that has found widespread use in a variety of food and beverage applications. A large amount of the whey proteins produced in the United States is derived from annatto-colored Cheddar cheese. Color from annatto is undesirable in whey and must be bleached. The objective of this study was to compare 2 commercially approved bleaching agents, benzoyl peroxide (BP) and hydrogen peroxide (HP), and their effects on the flavor and functionality of 80% whey protein concentrate (WPC80). Colored and uncolored liquid wheys were bleached with BP or HP, and then ultrafiltered, diafiltered, and spray-dried; WPC80 from unbleached colored and uncolored Cheddar whey were manufactured as controls. All treatments were manufactured in triplicate. The WPC80 were then assessed by sensory, instrumental, functionality, color, and proximate analysis techniques. The HP-bleached WPC80 were higher in lipid oxidation compounds (specifically hexanal, heptanal, octanal, nonanal, decanal, dimethyl disulfide, and 1-octen-3-one) and had higher fatty and cardboard flavors compared with the other unbleached and BP-bleached WPC80. The WPC80 bleached with BP had lower norbixin concentrations compared with WPC80 bleached with HP. The WPC powders differed in Hunter color values (L, a, b), with bleached powders being more white, less red, and less yellow than unbleached powders. Bleaching with BP under the conditions used in this study resulted in larger reductions in yellowness of the powders made from whey with annatto color than did bleaching with HP. Functionality testing demonstrated that whey bleached with HP treatments had more soluble protein after 10 min of heating at 90°C at pH 4.6 and pH 7 than the no-bleach and BP treatments, regardless of additional color. Overall, HP bleaching caused more lipid oxidation products and subsequent off-flavors compared with BP bleaching. However, heat stability of WPC80 was enhanced by HP bleaching compared with control or BP-bleached WPC80.


Asunto(s)
Proteínas de la Leche/normas , Peróxido de Benzoílo/farmacología , Blanqueadores/farmacología , Color , Tecnología de Alimentos/métodos , Peróxido de Hidrógeno/farmacología , Proteínas de la Leche/efectos de los fármacos , Gusto , Proteína de Suero de Leche
6.
J Dairy Sci ; 93(5): 1890-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20412902

RESUMEN

Whey proteins are a major ingredient in sports drink and functional beverages. At low pH, whey proteins are astringent, which may be undesirable in some applications. Understanding the astringency mechanism of whey proteins at low pH could lead to developing ways to minimize the astringency. This study compared the astringency of beta-lactoglobulin (beta-LG) at low pH with phosphate buffer controls having the same amount of phosphate and at similar pH. Results showed that beta-LG samples were more astringent than phosphate buffers, indicating that astringency was not caused by acid alone and that proteins contribute to astringency. When comparing among various whey protein isolates (WPI) and lactoferrin at pH 3.5, 4.5, and 7.0, lactoferrin was astringent at pH 7.0 where no acid was added. In contrast, astringency of all WPI decreased at pH 7.0. This can be explained by lactoferrin remaining positively charged at pH 7.0 and able to interact with negatively charged saliva proteins, whereas the negatively charged WPI would not interact. Charge interactions were further supported by beta-LG or lactoferrin and salivary proteins precipitating when mixed at conditions where beta-LG, lactoferrin, or saliva themselves did not precipitate. It can be concluded that interactions between positively charged whey proteins and salivary proteins play a role in astringency of proteins at low pH.


Asunto(s)
Proteínas de la Leche/química , Adulto , Tampones (Química) , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Concentración de Iones de Hidrógeno , Lactoferrina/química , Lactoglobulinas/química , Masculino , Saliva/química , Gusto , Proteína de Suero de Leche , Adulto Joven
7.
J Dairy Sci ; 93(5): 1900-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20412903

RESUMEN

Whey protein beverages are adjusted to pH <4.5 to enhance clarity and stability, but this pH level is also associated with increased astringency. The goal of this investigation was to determine the effects of protein concentration on astringency and interactions between whey and salivary proteins. Whey protein beverages containing 0.25 to 13% (wt/wt) beta-lactoglobulin and 0.017% (wt/wt) sucralose at pH 2.6 to 4.2 were examined using descriptive sensory analysis. Controls were similar pH phosphate buffers at phosphate concentrations equivalent to the amount of phosphoric acid required to adjust the pH of the protein solution. Changes in astringency with protein concentration depended on pH. At pH 3.5, astringency significantly increased with protein concentration from 0.25 to 4% (wt/wt) and then remained constant from 4 to 13% (wt/wt). Conversely, at pH 2.6, astringency decreased with an increase in protein concentration [0.5-10% (wt/wt)]. This suggests a complex relationship that includes pH and buffering capacity of the beverages. Furthermore, saliva flow rates increased with increasing protein concentrations, showing that the physiological conditions in the mouth change with protein concentration. Maximum turbidity of whey protein-saliva mixtures was observed between pH 4.6 and 5.2. Both sensory evaluation and in vitro study of interactions between beta-LG and saliva indicate that astringency of whey proteins is a complex process determined by the extent of aggregation occurring in the mouth, which depends on the whey protein beverage pH and buffering capacity in addition to saliva flow rate.


Asunto(s)
Proteínas de la Leche/química , Saliva/química , Adulto , Bebidas/análisis , Tampones (Química) , Femenino , Humanos , Concentración de Iones de Hidrógeno , Lactoglobulinas/química , Masculino , Saliva/fisiología , Sacarosa/análogos & derivados , Sacarosa/química , Gusto , Proteína de Suero de Leche , Adulto Joven
8.
J Dairy Sci ; 93(10): 4565-76, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20854990

RESUMEN

Reduced- and low-fat cheeses are desired based on composition but often fall short on overall quality. One of the major problems with fat reduction in cheese is the development of a firm texture that does not break down during mastication, unlike that observed in full-fat cheeses. The objective of this investigation was to determine how the amount of fat affects the structure of Cheddar cheese from initial formation (2 wk) through 24 wk of aging. Cheeses were made with target fat contents of 3 to 33% (wt/wt) and moisture to protein ratios of 1.5:1. This allowed for comparisons based on relative amounts of fat and protein gel phases. Cheese microstructure was determined by confocal scanning laser microscopy combined with quantitative image analysis. Rheological analysis was used to determine changes in mechanical properties. Increasing fat content caused an increase in size of fat globules and a higher percentage of nonspherical globules. However, no changes in fat globules were observed with aging. Cheese rigidity (storage modulus) increased with fat content at 10°C, but differences attributable to fat were not apparent at 25°C. This was attributable to the storage modulus of fat approaching that of the protein gel; therefore, the amount of fat or gel phase did not have an effect on the cheese storage modulus. The rigidity of cheese decreased with storage and, because changes in the fat phase were not detected, it appeared to be attributable to changes in the gel network. It appeared that the diminished textural quality in low-fat Cheddar cheese is attributed to changes in the breakdown pattern during chewing, as altered by fat disrupting the cheese network.


Asunto(s)
Queso/análisis , Grasas de la Dieta/análisis , Manipulación de Alimentos/métodos , Animales , Fenómenos Químicos , Reología , Factores de Tiempo
9.
J Dairy Sci ; 92(10): 4756-72, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19762791

RESUMEN

This study investigated the effects of aging and fat content on the texture of Cheddar cheese, both mechanical and sensory aspects, over a 9-mo aging period. Cheeses of 6, 16, and 33% fat were tested at 0.5, 3, 6, and 9 mo of aging. Cheeses were evaluated by a trained sensory panel using an established texture lexicon as well as instrumental methods, which were used to probe cheese structure. Sensory analysis showed that low-fat cheeses were differentiated from full-fat cheeses by being more springy and firm and this difference widened as the cheeses aged. In addition, full-fat cheeses broke down more during chewing than the lower fat cheeses and the degree of breakdown increased with aging. Mechanical properties were divided by magnitude of deformation during the test and separated into 3 ranges: the linear viscoelastic region, the nonlinear region, and fracture point. These regions represent a stress/strain response from low to high magnitude, respectively. Strong relationships between sensory terms and rheological properties determined in the linear (maximum compliance) and nonlinear (critical stress and strain and a nonlinear shape factor) regions were revealed. Some correlations were seen with fracture values, but these were not as high as terms related to the nonlinear region of the cheeses. The correlations pointed to strain-weakening behavior being the critical mechanical property. This was associated with higher fat content cheeses breaking down more as strain increased up to fracture. Increased strain weakening associated with an increase in fat content was attributed to fat producing weak points in the protein network, which became initiation sites for fracture within the structure. This suggests that fat replacers need to serve this functional role.


Asunto(s)
Queso/análisis , Grasas de la Dieta/análisis , Manipulación de Alimentos/métodos , Sensación , Fenómenos Químicos , Elasticidad , Femenino , Humanos , Fenómenos Mecánicos , Persona de Mediana Edad , Reología , Factores de Tiempo , Viscosidad
10.
J Dairy Sci ; 91(7): 2553-60, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18565912

RESUMEN

A rapidly growing area of whey protein use is in beverages. There are 2 types of whey protein-containing beverages: those at neutral pH and those at low pH. Astringency is very pronounced at low pH. Astringency is thought to be caused by compounds in foods that bind with and precipitate salivary proteins; however, the mechanism of astringency of whey proteins is not understood. The effect of viscosity and pH on the astringency of a model beverage containing whey protein isolate was investigated. Trained sensory panelists (n = 8) evaluated the viscosity and pH effects on astringency and basic tastes of whey protein beverages containing 6% wt/vol protein. Unlike what has been shown for alum and polyphenols, increasing viscosity (1.6 to 7.7 mPa.s) did not decrease the perception of astringency. In contrast, the pH of the whey protein solution had a major effect on astringency. A pH 6.8 whey protein beverage had a maximum astringency intensity of 1.2 (15-point scale), whereas that of a pH 3.4 beverage was 8.8 (15-point scale). Astringency decreased between pH 3.4 and 2.6, coinciding with an increase in sourness. Decreases in astringency corresponded to decreases in protein aggregation as observed by turbidity. We propose that astringency is related to interactions between positively charged whey proteins and negatively charged saliva proteins. As the pH decreased between 3.4 and 2.6, the negative charge on the saliva proteins decreased, causing the interactions with whey proteins to decrease.


Asunto(s)
Bebidas/análisis , Manipulación de Alimentos/métodos , Concentración de Iones de Hidrógeno , Proteínas de la Leche/química , Gusto , Animales , Bebidas/normas , Bovinos , Relación Dosis-Respuesta a Droga , Humanos , Proteínas de la Leche/análisis , Proteínas de la Leche/farmacología , Reología , Viscosidad , Proteína de Suero de Leche
11.
Colloids Surf B Biointerfaces ; 54(2): 200-10, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17123793

RESUMEN

Whipped foams (10%, w/v protein, pH 7.0) were prepared from commercially available samples of whey protein isolate (WPI) and egg white protein (EWP), and subsequently compared based on yield stress (tau(0)), overrun and drainage stability. Adsorption rates and interfacial rheological measurements at a model air/water interface were quantified via pendant drop tensiometry to better understand foaming differences among the ingredients. The highest tau(0) and resistance to drainage were observed for standard EWP, followed by EWP with added 0.1% (w/w) sodium lauryl sulfate, and then WPI. Addition of 25% (w/w) sucrose increased tau(0) and drainage resistance of the EWP-based ingredients, whereas it decreased tau(0) of WPI foams and minimally affected their drainage rates. These differing sugar effects were reflected in the interfacial rheological measurements, as sucrose addition increased the dilatational elasticity for both EWP-based ingredients, while decreasing this parameter for WPI. Previously observed relationships between tau(0) and interfacial rheology did not hold across the protein types; however, these measurements did effectively differentiate foaming behaviors within EWP-based ingredients and within WPI. Interfacial data was also collected for purified beta-lactoglobulin (beta-lg) and ovalbumin, the primary proteins of WPI and EWP, respectively. The addition of 25% (w/w) sucrose increased the dilatational elasticity for adsorbed layers of beta-lg, while minimally affecting the interfacial rheology of adsorbed ovalbumin, in contrast to the response of WPI and EWP ingredients. These experiments underscore the importance of utilizing the same materials for interfacial measurements as used for foaming experiments, if one is to properly infer interfacial information/mechanisms and relate this information to bulk foaming measurements. The effects of protein concentration and measurement time on interfacial rheology were also considered as they relate to bulk foam properties. This data should be of practical assistance to those designing aerated food products, as it has not been previously reported that sucrose addition improves the foaming characteristics of EWP-based ingredients while negatively affecting the foaming behavior of WPI, as these types of protein isolates are common to the food industry.


Asunto(s)
Proteínas del Huevo/química , Proteínas de la Leche/química , Animales , Bovinos , Pollos , Reología , Albúmina Sérica/química , Proteína de Suero de Leche
12.
J Dairy Sci ; 90(4): 1611-24, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17369201

RESUMEN

Instrumental mechanical properties (instrumental tests that measure force and deformation over time) of cheese and cheese texture (sensory perception of cheese structure) are critical attributes. Accurate measurement of these properties requires both instrumental and sensory testing. Fundamental rheological and fracture tests provide accurate measurement of mechanical properties that can be described based on chemical and structural models. Sensory testing likewise covers a range of possible tests with selection of the specific test dependent of the specific goal desired. Establishing relationships between instrumental and sensory tests requires careful selection of tests and consideration and analysis of the results. A review of these tests and a critical analysis of establishing relationships between instrumental and sensory tests is presented.


Asunto(s)
Queso/análisis , Tecnología de Alimentos , Sensación , Queso/normas , Masticación , Mecánica , Reología , Terminología como Asunto
13.
J Dairy Sci ; 90(5): 2163-74, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17430914

RESUMEN

Two sets of cheeses were evaluated to determine factors that affect shred quality. The first set of cheeses was made up of 3 commercial cheeses, Monterey Jack, Mozzarella, and process. The second set of cheeses was made up of 3 Mozzarella cheeses with varying levels of protein and fat at a constant moisture content. A shred distribution of long shreds, short shreds, and fines was obtained by shredding blocks of cheese in a food processor. A probe tack test was used to directly measure adhesion of the cheese to a stainless-steel surface. Surface energy was determined based on the contact angles of standard liquids, and rheological characterization was done by a creep and recovery test. Creep and recovery data were used to calculate the maximum and initial compliance and retardation time. Shredding defects of fines and adhesion to the blade were observed in commercial cheeses. Mozzarella did not adhere to the blade but did produce the most fines. Both Monterey Jack and process cheeses adhered to the blade and produced fines. Furthermore, adherence to the blade was correlated positively with tack energy and negatively with retardation time. Mozzarella cheese, with the highest fat and lowest protein contents, produced the most fines but showed little adherence to the blade, even though tack energy increased with fat content. Surface energy was not correlated with shredding defects in either group of cheese. Rheological properties and tack energy appeared to be the key factors involved in shredding defects.


Asunto(s)
Queso/análisis , Manipulación de Alimentos/métodos , Grasas de la Dieta/análisis , Reología , Estadística como Asunto , Temperatura , Factores de Tiempo
14.
J Dairy Sci ; 90(7): 3091-109, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17582091

RESUMEN

Cheddar cheese is a natural product that has a variable flavor and texture profile. Many companies produce 291-kg blocks of Cheddar cheese, which are subsequently cut and shipped, or stored and subsequently cut. Previous research has shown that compositional differences exist within 291-kg blocks and that these differences may influence flavor and texture development. The objectives of this study were to systematically characterize flavor and texture differences within 291-kg blocks. On 2 different occasions, a 291-kg block was manufactured at each of 4 manufacturing facilities. After 7 d, the 291-kg blocks were sliced into sixteen 18-kg sample portions using a predetermined diagram, and each portion was labeled appropriately (outer corner, inner corner, etc.) and stored at 7 degrees C. Cheese from different locations within the 291-kg blocks was evaluated at 1, 4, 8, and 12 mo. At each time point, two 18-kg portions representing an inside and outside location with the 291-kg block cross-section (from inside to outside) were sampled. The moisture content was lower in the inner than outer locations within the 291-kg blocks. Protein hydrolysis was higher in the inner location and inner locations developed aged Cheddar flavors sulfur, nutty, and brothy more rapidly than the outer locations. However, plant-to-plant differences in aging were often larger than differences caused by block location. These differences were due to differences in cheese manufacturing practices among plants. Dynamic headspace results for flavor volatiles were consistent with descriptive sensory flavor results, documenting differences between inner and outer locations within 291-kg blocks. The inner locations were more fracturable and the outer locations were more cohesive and had more residual in the mouth. Inner locations had greater fracture strain than outer locations. Documenting the differences in aging of 291-kg blocks of Cheddar cheese is important in understanding how to make a consistent high-quality Cheddar cheese.


Asunto(s)
Queso/análisis , Queso/normas , Manipulación de Alimentos/métodos , Gusto , Animales , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hidrólisis , Análisis de los Mínimos Cuadrados , Proteínas de la Leche/química , Proteínas de la Leche/metabolismo , Factores de Tiempo , Volatilización , Agua/análisis
15.
J Food Sci ; 81(4): C849-57, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26910294

RESUMEN

This study evaluated flavor and functional characteristics of whey protein isolates (WPIs) from Cheddar, Mozzarella, Cottage cheese, and rennet casein whey. WPIs were manufactured in triplicate. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid-phase microextraction followed by gas chromatography-mass spectrometry. Functional properties were evaluated by measurement of foam stability, heat stability, and protein solubility. WPI from Cheddar and Cottage cheese whey had the highest cardboard flavor, whereas sweet aromatic flavor was highest in Mozzarella WPI, and rennet casein WPI had the lowest overall flavor and aroma. Distinct sour taste and brothy/potato flavor were also noted in WPI from Cottage cheese whey. Consistent with sensory results, aldehyde concentrations were also highest in Cheddar and Cottage cheese WPI. Overrun, yield stress, and foam stability were not different (P > 0.05) among Cheddar, Mozzarella, and rennet casein WPI, but WPI foams from Cottage cheese whey had a lower overrun and air-phase fraction (P < 0.05). Cottage cheese WPI was more heat stable at pH 7 (P < 0.05) than other WPI in 4% protein solutions, and was the only WPI to not gel at 10% protein. Cottage cheese WPI was less soluble at pH 4.6 compared to other WPI (P < 0.05) and also exhibited higher turbidity loss at pH 3 to 7 compared to other WPI (P < 0.05). This study suggests that WPI produced from nontraditional whey sources could be used in new applications due to distinct functional and flavor characteristics.


Asunto(s)
Queso/análisis , Gusto , Proteína de Suero de Leche/química , Aldehídos/análisis , Caseínas/química , Quimosina/química , Aromatizantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Concentración de Iones de Hidrógeno , Proteínas de la Leche/química , Odorantes , Microextracción en Fase Sólida , Temperatura , Suero Lácteo
16.
J Colloid Interface Sci ; 288(2): 412-22, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15927608

RESUMEN

beta-lactoglobulin (beta-lg) was hydrolyzed with three different proteases and subsequently evaluated for its foaming potential. Foam yield stress (tau0) was the primary variable of interest. Two heat treatments designed to inactivate the enzymes, 75 degrees C/30 min and 90 degrees C/15 min, were also investigated for their effects on foam tau0. Adsorption rates and dilatational rheological tests at a model air/water interface aided data interpretation. All unheated hydrolysates improved foam tau0 as compared to unhydrolyzed beta-lg, with those of pepsin and Alcalase 2.4L(R) being superior to trypsin. Heat inactivation negatively impacted foam tau0, although heating at 75 degrees C/30 min better preserved this parameter than heating at 90 degrees C/15 min. All hydrolysates adsorbed more rapidly at the air/water interface than unhydrolyzed beta-lg, as evidenced by their capacity to lower the interfacial tension. A previously observed relationship between interfacial dilatational elasticity (E') and tau0 was generally confirmed for these hydrolysates. Additionally, the three hydrolysates imparting the highest tau0 not only had high values of E' (approximately twice that of unhydrolyzed beta-lg), they also had very low phase angles (essentially zero). This highly elastic interfacial state is presumed to improve foam tau0 indirectly by improving foam stability and directly by imparting resistance to interfacial deformation.


Asunto(s)
Lactoglobulinas/química , Animales , Bovinos , Concentración de Iones de Hidrógeno , Hidrólisis , Pepsina A/química , Subtilisinas/química , Propiedades de Superficie , Temperatura , Factores de Tiempo , Tripsina/química
17.
J Agric Food Chem ; 48(10): 5046-52, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11052776

RESUMEN

Whey protein isolate (WPI) gels were prepared from solutions containing ribose or lactose at pH values ranging from 6 to 9. The gels with added lactose had no color development, whereas the gels with added ribose were orange/brown. Lactose stabilized the WPI to denaturation, which increased the time and temperature required for gelation, thus decreasing the fracture modulus of the gel compared to the gels with added ribose and the gels with no sugar added. Ribose, however, favored the Maillard reaction and covalent cross-linking of proteins, which increased gel fracture modulus. The decreased pH caused by the Maillard reaction in the gels containing ribose occurred after protein denaturation and gelation, thus having little if any effect on the gelation process.


Asunto(s)
Carbohidratos/química , Proteínas de la Leche/química , Rastreo Diferencial de Calorimetría , Electroforesis en Gel de Poliacrilamida , Geles , Reología , Proteína de Suero de Leche
18.
J Agric Food Chem ; 47(9): 3649-55, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10552698

RESUMEN

Whey protein polymers were formed by heating whey protein isolate solutions at 80 degrees C. Flow behaviors of whey protein polymers produced from different protein concentrations and heating times were comparable to various flow behaviors of hydrocolloids. Polymer formation was found to be a two-phase process. The initial protein concentration was a significant factor that determines the size and/or shape of the primary polymer in the first phase as shown by intrinsic viscosity. Heating time was a factor in determining the aggregation in the second phase as shown by apparent viscosity. Intrinsic viscosity of whey protein polymers was as high as 141.7 +/- 7.30 mL/g, compared to 5.04 +/- 0.20 mL/g for native whey proteins. The intrinsic viscosity and gel electrophoresis data suggested that disulfide bonds played an important role in whey polymer formation.


Asunto(s)
Proteínas de la Leche/química , Coloides , Electroforesis en Gel de Poliacrilamida/métodos , Calor , Reología/métodos , Estrés Mecánico , Termodinámica , Viscosidad , Proteína de Suero de Leche
19.
J Agric Food Chem ; 48(3): 605-10, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10725122

RESUMEN

Effects of phosphatidylcholine (PC) and the predominant fatty acids (FAs) in milk, butyrate, oleate, and palmitate, on secondary structural changes in beta-lactoglobulin (beta-LG) during heat-induced gelation were analyzed on the basis of circular dichroism (CD) spectra. Small-strain oscillatory measurements were carried out to characterize viscoelastic properties of the heat-induced gels. In the absence of added salt, PC and FAs induced helix formation of beta-LG on heating to 80 degrees C and increased the storage moduli (G') of heat-induced gels. In the presence of 500 mM NaCl, PC did not change the CD spectrum of beta-LG but decreased G'. In contrast, butyrate substantially unfolded beta-LG in 500 mM NaCl on heating, forming very elastic gels with increased G' values. Palmitate and oleate induced beta-LG gel formation at 25 degrees C without heating; heating to 80 degrees C almost completely unfolded beta-LG in 500 mM NaCl.


Asunto(s)
Ácidos Grasos/química , Lactoglobulinas/química , Fosfatidilcolinas/química , Geles , Calor , Humanos , Estructura Secundaria de Proteína
20.
J Agric Food Chem ; 48(8): 3112-9, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10956078

RESUMEN

Pregelatinized starch is employed in many food applications due to the instantaneous nature of thickening and stability imparted by modification. Proteins, however, have been excluded as a viscosifying agent due to requisite thermal treatments required to create structure. Whey protein isolate gels were produced while manipulating heating time, pH, and mineral type/content, producing a variety of gel types/networks. Gels were frozen, freeze-dried, and ground into a powder. Once reconstituted in deionized water, gel powders were evaluated based on solubility studies, rotational viscometry, and electrophoresis. The protein powder exhibiting the largest apparent viscosity, highest degree of hydrolysis, and greatest solubility was selected for pH and temperature stability analyses and small amplitude oscillatory rheology. This processing technique manipulates WPI into a product capable of forming cold-set weak gel structures suitable for thickening over a wide range of temperature and pH food systems.


Asunto(s)
Proteínas de la Leche/química , Polvos , Reología , Proteína de Suero de Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA