Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067060

RESUMEN

Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF ß1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF ß1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF ß1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.


Asunto(s)
Transición Epitelial-Mesenquimal , Epitelio/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , MicroARNs/metabolismo , Pericardio/patología , Animales , Biomarcadores/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Mesodermo/patología , Ratones Endogámicos C57BL , MicroARNs/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor de Crecimiento Transformador beta1/farmacología
2.
J Cell Physiol ; 232(5): 1135-1143, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27580416

RESUMEN

Exogenous High Mobility Group Box-1 protein (HMGB1) has been reported to protect the infarcted heart but the underlying mechanism is quite complex. In particular, its effect on ischemic cardiomyocytes has been poorly investigated. Aim of the present study was to verify whether and how autophagy and apoptosis were involved in HMGB1-induced heart repair following myocardial infarction (MI). HMGB1 (200 ng) or denatured HMGB1 were injected in the peri-infarcted region of mouse hearts following acute MI. Three days after treatment, an upregulation of autophagy was detected in infarcted HMGB1 treated hearts compared to controls. Specifically, HMGB1 induced autophagy by significantly upregulating the protein expression of LC3, Beclin-1, and Atg7 in the border zone. To gain further insights into the molecular mechanism of HMGB1-mediated autophagy, WB analysis were performed in cardiomyocytes isolated from 3 days infarcted hearts in the presence and in the absence of HMGB1 treatment. Results showed that upregulation of autophagy by HMGB1 treatment was potentially related to activation of AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1). Accordingly, in these hearts, phospho-Akt signaling pathway was inhibited. The induction of autophagy was accompanied by reduced cardiomyocyte apoptotic rate and decreased expression levels of Bax/Bcl-2 and active caspase-3 in the border zone of 3 days infarcted mice following HMGB1 treatment. We report the first in vivo evidence that HMGB1 treatment in a murine model of acute MI might induce cardiomyocyte survival through attenuation of apoptosis and AMP-activated protein kinase-dependent autophagy. J. Cell. Physiol. 232: 1135-1143, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteína HMGB1/farmacología , Complejos Multiproteicos/antagonistas & inhibidores , Infarto del Miocardio/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Biomarcadores/metabolismo , Separación Celular , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Pruebas de Función Cardíaca , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
3.
J Cell Physiol ; 232(7): 1835-1844, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27925196

RESUMEN

Sirtuins are conserved NAD+ -dependent deacylases. SIRT1 is a nuclear and cytoplasmic sirtuin involved in the control of histones a transcription factors function. SIRT3 is a mitochondrial protein, which regulates mitochondrial function. Although, both SIRT1 and SIRT3 have been implicated in resistance to cellular stress, the link between these two sirtuins has not been studied so far. Here we aimed to unravel: i) the role of SIRT1-SIRT3 axis for cellular response to oxidative stress and DNA damage; ii) how mammalian cells modulate such SIRT1-SIRT3 axis and which mechanisms are involved. Therefore, we analyzed the response to different stress stimuli in WT or SIRT1-silenced cell lines. Our results demonstrate that SIRT1-silenced cells are more resistant to H2 O2 and etoposide treatment showing decreased ROS accumulation, γ-H2AX phosphorylation, caspase-3 activation and PARP cleavage. Interestingly, we observed that SIRT1-silenced cells show an increased SIRT3 expression. To explore such a connection, we carried out luciferase assays on SIRT3 promoter demonstrating that SIRT1-silencing increases SIRT3 promoter activity and that such an effect depends on the presence of SP1 and ZF5 recognition sequences on SIRT3 promoter. Afterwards, we performed co-immunoprecipitation assays demonstrating that SIRT1 binds and deacetylates the transcription inhibitor ZF5 and that there is a decreased interaction between SP1 and ZF5 in SIRT1-silenced cells. Therefore, we speculate that acetylated ZF5 cannot bind and sequester SP1 that is free, then, to increase SIRT3 transcription. In conclusion, we demonstrate that cells with low SIRT1 levels can maintain their resistance and survival by increasing SIRT3 expression. J. Cell. Physiol. 232: 1835-1844, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Etopósido/farmacología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Acetilación/efectos de los fármacos , Animales , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Ratones , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción Sp1/metabolismo
4.
Mol Ther ; 21(10): 1841-51, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23760446

RESUMEN

Exogenous high-mobility group box 1 protein (HMGB1) administration to the mouse heart, during acute myocardial infarction (MI), results in cardiac regeneration via resident c-kit(+) cell (CPC) activation. Aim of the present study was to identify the molecular pathways involved in HMGB1-induced heart repair. Gene expression profiling was performed to identify differentially expressed genes in the infarcted and bordering regions of untreated and HMGB1-treated mouse hearts, 3 days after MI. Functional categorization of the transcripts, accomplished using Ingenuity Pathway Analysis software (IPA), revealed that genes involved in tissue regeneration, that is, cardiogenesis, vasculogenesis and angiogenesis, were present both in the infarcted area and in the peri-infarct zone; HMGB1 treatment further increased the expression of these genes. IPA revealed the involvement of Notch signaling pathways in HMGB1-treated hearts. Importantly, HMGB1 determined a 35 and 58% increase in cardiomyocytes and CPCs expressing Notch intracellular cytoplasmic domain, respectively. Further, Notch inhibition by systemic treatment with the γ-secretase inhibitor DAPT, which blocked the proteolytic activation of Notch receptors, reduced the number of CPCs, their proliferative fraction, and cardiomyogenic differentiation in HMGB1-treated infarcted hearts. The present study gives insight into the molecular processes involved in HMGB1-mediated cardiac regeneration and indicates Notch signaling as a key player.


Asunto(s)
Perfilación de la Expresión Génica , Proteína HMGB1/farmacología , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptores Notch/metabolismo , Regeneración/genética , Transducción de Señal , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Proteína HMGB1/administración & dosificación , Corazón/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Cells ; 12(22)2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37998340

RESUMEN

Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5+, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells. Specifically, H9C2 cells exposed to DOXO showed an increase in the protein expression proteins of senescence-associated genes, p21 and p16, and a decrease in the telomere binding factors TRF1 and TRF2, indicative of senescence induction. Nevertheless, A5+ pre-treatment attenuated the senescent-like cell phenotype, as evidenced by inhibition of all senescent markers and a decrease in SA-ß-gal staining in DOXO-treated H9C2 cells. Importantly, A5+ restored the LC3 II/LC3 I ratio, Parkin and BNIP3 expression, therefore rescuing mitophagy, and decreased ROS production. Further, A5+ pre-treatment determined a ripolarization of the mitochondrial membrane and improved basal respiration. A5+-mediated protective effects might be related to its ability to activate mitochondrial SIRT3 in synergy with other micronutrients, but in contrast with SIRT4 activation. Accordingly, SIRT4 knockdown in H9C2 cells further increased MnSOD activity, enhanced mitophagy, and reduced ROS generation following A5+ pre-treatment and DOXO exposure compared to WT cells. Indeed, we demonstrated that A5+ protects H9C2 cells from DOXO-induced senescence, establishing a new specific role for A5+ in controlling mitochondrial quality control by restoring SIRT3 activity and mitophagy, which provided a molecular basis for the development of therapeutic strategies against cardiomyocyte senescence.


Asunto(s)
Mitofagia , Sirtuina 3 , Mitofagia/genética , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/genética , Micronutrientes , Senescencia Celular , Doxorrubicina/farmacología
6.
Exp Hematol Oncol ; 12(1): 82, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749607

RESUMEN

BACKGROUND: The pattern recognition receptor long pentraxin-3 (PTX3) plays conflicting roles in cancer by acting as an oncosuppressor or as a pro-tumor mediator depending on tumor context. Triple negative breast cancer (TNBC) represents the most aggressive histotype of breast cancer, characterized by the lack of efficacious therapeutic targets/approaches and poor prognosis. Thus, the characterization of new molecular pathways and/or alternative druggable targets is of great interest in TNBC. METHODS: The expression of PTX3 in BC tumor samples and in BC cell lines has been analyzed using the Gene Expression-Based Outcome for Breast Cancer Online (GOBO), qPCR, Western blot and ELISA assay. The contribution of tumor and stromal cells to PTX3 production in TNBC was assessed by analyzing single cell RNA sequencing data and RNAscope performed on TNBC tumor samples. In order to investigate the effects of PTX3 in TNBC, different cell lines were engineered to knock-down (MDA-MB-231 and BT549 cells) or overexpress (MDA-MB-468 and E0771 cells) PTX3. Finally, using these engineered cells, in vitro (including gene expression profiling and gene set enrichment analyses) and in vivo (orthotopic tumor models in immune-compromised and immune competent mice) analyses were performed to assess the role and the molecular mechanism(s) exerted by PTX3 in TNBC. RESULTS: In silico and experimental data indicate that PTX3 is mainly produced by tumor cells in TNBC and that its expression levels correlate with tumor stage. Accordingly, gene expression and in vitro results demonstrate that PTX3 overexpression confers a high aggressive/proliferative phenotype and fosters stem-like features in TNBC cells. Also, PTX3 expression induces a more tumorigenic potential when TNBC cells are grafted orthotopically in vivo. Conversely, PTX3 downregulation results in a less aggressive behavior of TNBC cells. Mechanistically, our data reveal that PTX3 drives the activation of the pro-tumorigenic Toll-like receptor 4 (TLR4) signaling pathway in TNBC, demonstrating for the first time that the PTX3/TLR4 autocrine stimulation loop contributes to TNBC aggressiveness and that TLR4 inhibition significantly impacts the growth of PTX3-producing TNBC cells. CONCLUSION: Altogether, these data shed light on the role of tumor-produced PTX3 in TNBC and uncover the importance of the PTX3/TLR4 axis for therapeutic and prognostic exploitation in TNBC.

7.
J Cell Biochem ; 113(6): 1926-35, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22234917

RESUMEN

Patho-physiological conditions with high oxidative stress, such as conditions associated with increased denatured heme-proteins, are associated with enhanced adipogenic response. This effect predominantly manifests as adipocyte hypertrophy characterized by dysfunctional, pro-inflammatory adipocytes exhibiting reduced expression of anti-inflammatory hormone, adiponectin. To understand how increased levels of cellular heme, a pro-oxidant molecule, modulates adipogenesis; the following study was designed to evaluate effects of heme on adipogenesis in human mesenchymal stem cells (hMSCs) and mouse pre-adipocytes (3T3L1). Experiments were conducted in the absence and in the presence of a superoxide dismutase (SOD) mimetic (tempol, 100 µM). Heme (10 µM) increased (P<0.05) adipogenesis in hMSCs and mouse pre-adipocytes, where tempol alone (100 µmol/L) attenuated adipogenesis in these cells (P<0.05). Tempol also reversed heme-induced increase in adipogenesis in both hMSCs and mouse pre-adipocytes (P<0.05). In addition, heme exposed 3T3L1 exhibited reduced (P<0.05) expression of transcriptional regulator-sirtuin 1 (Sirt1), along with, increased (P<0.05) expression of adipogenic markers peroxisome proliferators-activated receptor-gamma (PPARγ), C/EBPα, and aP2. These effects of heme were rescued (P<0.05) in cells concurrently treated with heme and tempol (P<0.05) and prevented in cells over-expressing Sirt1. Taken together, our results indicate that heme-induced oxidative stress inhibits Sirt1, thus un-inhibiting adipogenic regulators such as PPARγ and C/EBPα; which in turn induce increased adipogenesis along with adipocyte hypertrophy in pre-adipocytes. Anti-oxidant induced offsetting of these effects of heme supports the role of heme-dependent oxidative stress in mediating such events.


Asunto(s)
Adipocitos/fisiología , Adipogénesis , Hemo/metabolismo , Hemo/farmacología , Células Madre Mesenquimatosas/fisiología , Estrés Oxidativo , Sirtuina 1/biosíntesis , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Adiponectina/biosíntesis , Animales , Antioxidantes/farmacología , Proteína alfa Potenciadora de Unión a CCAAT/biosíntesis , Línea Celular , Óxidos N-Cíclicos/farmacología , Proteínas de Unión a Ácidos Grasos/biosíntesis , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , PPAR gamma/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Marcadores de Spin
8.
Cells Tissues Organs ; 195(3): 252-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21494021

RESUMEN

We analyzed the morphological changes in rat aortas during nicotine administration in order to investigate the involvement of vascular smooth muscle cells (VSMCs) in the regulation of vascular wall homeostasis. We also considered the possibility of restoring VSMC changes using melatonin as an antioxidant. We studied 4 groups of animals over 56 days. Three groups of rats were used as controls (the first without treatment, the second with melatonin alone and the third with nicotine alone). The last group of rats was orally treated with nicotine for the first 28 days and with melatonin for the last 28 days. Morphological changes in vessels were evaluated by histological procedures and immunohistochemical analysis using thrombospondin-1 (TSP-1), transforming growth factor-ß1 (TGF-ß1), plasminogen activator inhibitor-1 (PAI-1) and CD31 antibodies. We demonstrated that TSP-1, TGF-ß1 and PAI-1 increased after nicotine administration. We believe that TSP-1 is responsible for neointima formation and that it is able to influence TGF-ß1 and PAI-1 expression. Histological and immunohistochemical analysis by CD31 antibody showed that only a few endothelial cells were present in the aorta after nicotine administration compared to controls and rats treated with melatonin after nicotine administration. Moreover, histological analysis showed that neointima formation was present after nicotine treatment. Furthermore, melatonin inhibited neointima formation increasing TSP-1 expression. The ability of melatonin to inhibit neointima formation suggests that it could be a useful treatment for homeostasis of vascular walls.


Asunto(s)
Melatonina/farmacología , Músculo Liso Vascular/efectos de los fármacos , Nicotina/farmacología , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/metabolismo , Células Cultivadas , Inmunohistoquímica , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Ratas , Ratas Wistar
9.
Cells ; 11(2)2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35053332

RESUMEN

Different cell types belonging to the innate and adaptive immune system play mutually non-exclusive roles during the different phases of the inflammatory-reparative response that occurs following myocardial infarction. A timely and finely regulation of their action is fundamental for the process to properly proceed. The high-mobility group box 1 (HMGB1), a highly conserved nuclear protein that in the extracellular space can act as a damage-associated molecular pattern (DAMP) involved in a large variety of different processes, such as inflammation, migration, invasion, proliferation, differentiation, and tissue regeneration, has recently emerged as a possible regulator of the activity of different immune cell types in the distinct phases of the inflammatory reparative process. Moreover, by activating endogenous stem cells, inducing endothelial cells, and by modulating cardiac fibroblast activity, HMGB1 could represent a master regulator of the inflammatory and reparative responses following MI. In this review, we will provide an overview of cellular effectors involved in these processes and how HMGB1 intervenes in regulating each of them. Moreover, we will summarize HMGB1 roles in regulating other cell types that are involved in the different phases of the inflammatory-reparative response, discussing how its redox status could affect its activity.


Asunto(s)
Proteína HMGB1/metabolismo , Inflamación/metabolismo , Inflamación/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Alarminas/metabolismo , Animales , Humanos , Oxidación-Reducción , Regeneración
10.
Nat Commun ; 13(1): 5191, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057632

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complex and pivotal process involved in organogenesis and is related to several pathological processes, including cancer and fibrosis. During heart development, EMT mediates the conversion of epicardial cells into vascular smooth muscle cells and cardiac interstitial fibroblasts. Here, we show that the oncogenic transcription factor EB (TFEB) is a key regulator of EMT in epicardial cells and that its genetic overexpression in mouse epicardium is lethal due to heart defects linked to impaired EMT. TFEB specifically orchestrates the EMT-promoting function of transforming growth factor (TGF) ß, and this effect results from activated transcription of thymine-guanine-interacting factor (TGIF)1, a TGFß/Smad pathway repressor. The Tgif1 promoter is activated by TFEB, and in vitro and in vivo findings demonstrate its increased expression when Tfeb is overexpressed. Furthermore, Tfeb overexpression in vitro prevents TGFß-induced EMT, and this effect is abolished by Tgif1 silencing. Tfeb loss of function, similar to that of Tgif1, sensitizes cells to TGFß, inducing an EMT response to low doses of TGFß. Together, our findings reveal an unexpected function of TFEB in regulating EMT, which might provide insights into injured heart repair and control of cancer progression.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta , Animales , Células Cultivadas , Transición Epitelial-Mesenquimal/fisiología , Ratones , Organogénesis , Pericardio/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
Curr Stem Cell Res Ther ; 15(8): 661-673, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32072905

RESUMEN

BACKGROUND: Substantial evidences support the hypothesis that the epicardium has a role in cardiac repair and regeneration in part providing, by epithelial to mesenchymal transition (EMT), progenitor cells that differentiate into cardiac cell types and in part releasing paracrine factors that contribute to cardiac repair. Besides cell contribution, a significant paracrine communication occurs between the epicardium and the myocardium that improves the whole regenerative response. Signaling pathways underlying this communication are multiple as well as soluble factors involved in cardiac repair and secreted both by myocardial and epicardial cells. Most recently, extracellular vesicles, i.e. exosomes, that accumulate in the pericardial fluid (PF) and are able to transport bioactive molecules (cytosolic proteins, mRNAs, miRNAs and other non-coding RNAs), have been also identified as potential mediators of epicardial-mediated repair following myocardial injury. CONCLUSION: This mini-review provides an overview of the epicardial-myocardial signaling in regulating cardiac repair in ischemic heart diseases. Indeed, a detailed understanding of the crosstalk between myocardial and epicardial cells and how paracrine mechanisms are involved in the context of ischemic heart diseases would be of tremendous help in developing novel therapeutic approaches to promote cardiomyocytes survival and heart regeneration following myocardial infarction (MI).


Asunto(s)
Transición Epitelial-Mesenquimal , Infarto del Miocardio , Miocardio , Pericardio/fisiología , Transducción de Señal , Humanos , Miocitos Cardíacos
12.
Cancers (Basel) ; 12(3)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192047

RESUMEN

Cancer treatment has made significant progress in the cure of different types of tumors. Nevertheless, its clinical use is limited by unwanted cardiotoxicity. Aside from the conventional chemotherapy approaches, even the most newly developed, i.e., molecularly targeted therapy and immunotherapy, exhibit a similar frequency and severity of toxicities that range from subclinical ventricular dysfunction to severe cardiomyopathy and, ultimately, congestive heart failure. Specific mechanisms leading to cardiotoxicity still remain to be elucidated. For instance, oxidative stress and DNA damage are considered key players in mediating cardiotoxicity in different treatments. microRNAs (miRNAs) act as key regulators in cell proliferation, cell death, apoptosis, and cell differentiation. Their dysregulation has been associated with adverse cardiac remodeling and toxicity. This review provides an overview of the cardiotoxicity induced by different oncologic treatments and potential miRNAs involved in this effect that could be used as possible therapeutic targets.

13.
Cancer Res ; 80(11): 2340-2354, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32094301

RESUMEN

Multiple myeloma, the second most common hematologic malignancy, frequently relapses because of chemotherapeutic resistance. Fibroblast growth factors (FGF) act as proangiogenic and mitogenic cytokines in multiple myeloma. Here, we demonstrate that the autocrine FGF/FGFR axis is essential for multiple myeloma cell survival and progression by protecting multiple myeloma cells from oxidative stress-induced apoptosis. In keeping with the hypothesis that the intracellular redox status can be a target for cancer therapy, FGF/FGFR blockade by FGF trapping or tyrosine kinase inhibitor impaired the growth and dissemination of multiple myeloma cells by inducing mitochondrial oxidative stress, DNA damage, and apoptotic cell death that were prevented by the antioxidant vitamin E or mitochondrial catalase overexpression. In addition, mitochondrial oxidative stress occurred as a consequence of proteasomal degradation of the c-Myc oncoprotein that led to glutathione depletion. Accordingly, expression of a proteasome-nondegradable c-Myc protein mutant was sufficient to avoid glutathione depletion and rescue the proapoptotic effects due to FGF blockade. These findings were confirmed on bortezomib-resistant multiple myeloma cells as well as on bone marrow-derived primary multiple myeloma cells from newly diagnosed and relapsed/refractory patients, including plasma cells bearing the t(4;14) translocation obtained from patients with high-risk multiple myeloma. Altogether, these findings dissect the mechanism by which the FGF/FGFR system plays a nonredundant role in multiple myeloma cell survival and disease progression, and indicate that FGF targeting may represent a therapeutic approach for patients with multiple myeloma with poor prognosis and advanced disease stage. SIGNIFICANCE: This study provides new insights into the mechanisms by which FGF antagonists promote multiple myeloma cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/11/2340/F1.large.jpg.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Mitocondrias/metabolismo , Mieloma Múltiple/metabolismo , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Colesterol/análogos & derivados , Colesterol/farmacología , Femenino , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Distribución Aleatoria , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
14.
Clin Exp Hypertens ; 31(7): 560-71, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19886854

RESUMEN

It has been proposed that endothelial dysfunction is due to the excessive degradation of nitric oxide (NO) by oxidative stress. The enzyme heme-oxygenase (HO) seems to exert a protective effect on oxidative stress in the vasculature, both in animal models and in humans. The objective of this study is to evaluate the effects of inhibition or activation of HO on endothelial function in mesenteric small resistance arteries of spontaneously hypertensive rats (SHR). Six SHR were treated with cobalt protoporphyrin IX 50 mg/Kg (CoPP), an activator of HO; six SHR with stannous mesoporphyrin 30 mg/Kg (SnMP), an inhibitor of HO, and six SHR with saline. As controls, six Wistar-Kyoto rats (WKY) were treated with CoPP, six WKY with SnMP, and six WKY with saline. Drugs were injected in the peritoneum once a week for 2 weeks. Systolic blood pressure (SBP) was measured (tail cuff method) before and after treatment. Mesenteric small resistance arteries were mounted on a micromyograph. Endothelial function was evaluated as a cumulative concentration-response curve to acetylcholine (ACH), before and after preincubation with N(G)-methyl-L-arginine (L-NMMA, inhibitor of NO synthase), and to bradykinin (BK). In SHR treatment with CoPP, improved ACH-and BK-induced vasodilatation (ANOVA p < 0.001) and this improvement was abolished by L-NMMA (ANOVA p < 0.001). SnMP was devoid of effects on endothelial function. In WKY, both activation and inhibition of HO did not substantially affect endothelium-mediated vasodilatation. The stimulation of HO seems to induce an improvement of endothelial dysfunction in SHR by possibly reducing oxidative stress and increasing NO availability.


Asunto(s)
Endotelio Vascular/enzimología , Endotelio Vascular/fisiopatología , Hemo Oxigenasa (Desciclizante)/fisiología , Hipertensión/enzimología , Hipertensión/fisiopatología , Arterias Mesentéricas/enzimología , Arterias Mesentéricas/fisiopatología , Acetilcolina/farmacología , Animales , Bradiquinina/farmacología , Endotelio Vascular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Inmunohistoquímica , Técnicas In Vitro , Arterias Mesentéricas/efectos de los fármacos , Metaloporfirinas/farmacología , Óxido Nítrico/fisiología , Estrés Oxidativo , Protoporfirinas/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Resistencia Vascular , Vasodilatación/efectos de los fármacos , omega-N-Metilarginina/farmacología
15.
Vasc Biol ; 1(1): H89-H96, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32923959

RESUMEN

Acute myocardial infarction (MI) and its consequences are the most common and lethal heart syndromes worldwide and represent a significant health problem. Following MI, apoptosis has been generally seen as the major contributor of the cardiomyocyte fate and of the resultant myocardial remodeling. However, in recent years, it has been discovered that, following MI, cardiomyocytes could activate autophagy in an attempt to protect themselves against ischemic stress and to preserve cardiac function. Although initially seen as two completely separate responses, recent works have highlighted the intertwined crosstalk between apoptosis and autophagy. Numerous researches have tried to unveil the mechanisms and the molecular players involved in this phenomenon and have identified in high-mobility group box 1 (HMGB1), a highly conserved non-histone nuclear protein with important roles in the heart, one of the major regulator. Thus, the aim of this mini review is to discuss how HMGB1 regulates these two responses in ischemic heart diseases. Indeed, a detailed understanding of the crosstalk between apoptosis and autophagy in these pathologies and how HMGB1 regulates them would be of tremendous help in developing novel therapeutic approaches aimed to promote cardiomyocyte survival and to diminish tissue injury following MI.

16.
Pharmacol Ther ; 196: 160-182, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30529040

RESUMEN

High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.


Asunto(s)
Proteína HMGB1/metabolismo , Cardiopatías/metabolismo , Animales , Cardiopatías/patología , Humanos , Miocardio/metabolismo , Miocardio/patología
17.
Front Immunol ; 9: 2327, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349543

RESUMEN

Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a key role in various physiological and pathological conditions. Alteration of the angiogenic balance, consequent to the deranged production of angiogenic growth factors and/or natural angiogenic inhibitors, is responsible for angiogenesis-dependent diseases, including cancer. Fibroblast growth factor-2 (FGF2) represents the prototypic member of the FGF family, able to induce a complex "angiogenic phenotype" in endothelial cells in vitro and a potent neovascular response in vivo as the consequence of a tight cross talk between pro-inflammatory and angiogenic signals. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is a member of the pentraxin family produced locally in response to inflammatory stimuli. Besides binding features related to its role in innate immunity, PTX3 interacts with FGF2 and other members of the FGF family via its N-terminal extension, thus inhibiting FGF-mediated angiogenic responses in vitro and in vivo. Accordingly, PTX3 inhibits the growth and vascularization of FGF-dependent tumors and FGF2-mediated smooth muscle cell proliferation and artery restenosis. Recently, the characterization of the molecular bases of FGF2/PTX3 interaction has allowed the identification of NSC12, the first low molecular weight pan-FGF trap able to inhibit FGF-dependent tumor growth and neovascularization. The aim of this review is to provide an overview of the impact of PTX3 and PTX3-derived molecules on the angiogenic, inflammatory, and tumorigenic activity of FGF2 and their potential implications for the development of more efficacious anti-FGF therapeutic agents to be used in those clinical settings in which FGFs play a pathogenic role.


Asunto(s)
Proteína C-Reactiva/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Componente Amiloide P Sérico/fisiología , Animales , Humanos , Inflamación , Neovascularización Fisiológica
18.
Front Oncol ; 8: 472, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443492

RESUMEN

Fibrosarcomas are soft tissue mesenchymal tumors originating from transformed fibroblasts. Fibroblast growth factor-2 (FGF2) and its tyrosine-kinase receptors (FGFRs) play pivotal roles in fibrosarcoma onset and progression, FGF2 being actively produced by fibroblasts in all stages along their malignant transformation to the fibrosarcoma stage. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is an extrinsic oncosuppressor whose expression is reduced in different tumor types, including soft tissue sarcomas, via hypermethylation of its gene promoter. PTX3 interacts with FGF2 and other FGF family members, thus acting as a multi-FGF antagonist able to inhibit FGF-dependent neovascularization and tumor growth. Here, PTX3 overexpression significantly reduced the proliferative and tumorigenic potential of fibrosarcoma cells in vitro and in vivo. In addition, systemic delivery of human PTX3 driven by the Tie2 promoter inhibited the growth of fibrosarcoma grafts in transgenic mice. In a translational perspective, the PTX3-derived small molecule FGF trap NSC12 prevented activation of the FGF/FGFR system in fibrosarcoma cells and reduced their tumorigenic activity in vivo. In conclusion, impairment of the FGF/FGFR system by FGF trap molecules may represent a novel therapeutic approach for the treatment of fibrosarcoma.

19.
Oncotarget ; 9(1): 937-957, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29416668

RESUMEN

The regenerative effects of cardiac ckit+ stem cells (ckit+CSCs) in acute myocardial infarction (MI) have been studied extensively, but how these cells exert a protective effect on cardiomyocytes is not well known. Growing evidences suggest that in adult stem cells injury triggers inflammatory signaling pathways which control tissue repair and regeneration. Aim of the present study was to determine the mechanisms underlying the cardioprotective effects of ckit+CSCs following transplantation in a murine model of MI. Following isolation and in vitro expansion, cardiac ckit+CSCs were subjected to normoxic and hypoxic conditions and assessed at different time points. These cells adapted to hypoxia as showed by the activation of HIF-1α and the expression of a number of genes, such as VEGF, GLUT1, EPO, HKII and, importantly, of alarmin receptors, such as RAGE, P2X7R, TLR2 and TLR4. Activation of these receptors determined an NFkB-dependent inflammatory and reparative gene response (IRR). Importantly, hypoxic ckit+CSCs increased the secretion of the survival growth factors IGF-1 and HGF. To verify whether activation of the IRR in a hypoxic microenvironment could exert a beneficial effect in vivo, autologous ckit+CSCs were transplanted into mouse heart following MI. Interestingly, transplantation of ckit+CSCs lowered apoptotic rates and induced autophagy in the peri-infarct area; further, it reduced hypertrophy and fibrosis and, most importantly, improved cardiac function. ckit+CSCs are able to adapt to a hypoxic environment and activate an inflammatory and reparative response that could account, at least in part, for a protective effect on stressed cardiomyocytes following transplantation in the infarcted heart.

20.
J Mol Med (Berl) ; 93(7): 735-48, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25943780

RESUMEN

The epithelial to mesenchymal transition (EMT) is a biological process that drives the formation of cells involved both in tissue repair and in pathological conditions, including tissue fibrosis and tumor metastasis by providing cancer cells with stem cell properties. Recent findings suggest that EMT is reactivated in the heart following ischemic injury. Specifically, epicardial EMT might be involved in the formation of cardiac progenitor cells (CPCs) that can differentiate into endothelial cells, smooth muscle cells, and, possibly, cardiomyocytes. The identification of mechanisms and signaling pathways governing EMT-derived CPC generation and differentiation may contribute to the development of a more efficient regenerative approach for adult heart repair. Here, we summarize key literature in the field.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Células Madre Mesenquimatosas/citología , Isquemia Miocárdica/patología , Miocardio/citología , Pericardio/citología , Diferenciación Celular , Humanos , Miocitos Cardíacos/citología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA