Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Cancer ; 148(10): 2522-2534, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320972

RESUMEN

Pediatric low-grade gliomas (pLGGs) are the most frequent brain tumor in children. Adjuvant treatment, consisting in chemotherapy and radiotherapy, is often necessary if a complete surgical resection cannot be obtained. Traditional treatment approaches result in a significant long-term morbidity, with a detrimental impact on quality of life. Dysregulation of the mitogen-activated protein kinase (MAPK) pathway is the molecular hallmark of pLGGs and hyperactivation of the downstream mammalian target of rapamycin (mTOR) pathway is frequently observed. We report clinical and radiological results of front-line treatment with everolimus in 10 consecutive patients diagnosed with m-TOR positive pLGGs at the Bambino Gesù Children's Hospital in Rome, Italy. Median duration of treatment was 19 months (range from 13-60). Brain magnetic resonance imaging showed stable disease in 7 patients, partial response in 1 and disease progression in 2. Therapy-related adverse events were always reversible after dose reduction or temporary treatment interruption. To the best of our knowledge, this is the first report of everolimus treatment for chemo- and radiotherapy-naïve children with pLGG. Our results provide preliminary support, despite low sample size, for the use of everolimus as target therapy in pLGG showing lack of progression with a manageable toxicity profile.

2.
EMBO Rep ; 19(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29367285

RESUMEN

Despite progress in treating B-cell precursor acute lymphoblastic leukemia (BCP-ALL), disease recurrence remains the main cause of treatment failure. New strategies to improve therapeutic outcomes are needed, particularly in high-risk relapsed patients. Che-1/AATF (Che-1) is an RNA polymerase II-binding protein involved in proliferation and tumor survival, but its role in hematological malignancies has not been clarified. Here, we show that Che-1 is overexpressed in pediatric BCP-ALL during disease onset and at relapse, and that its depletion inhibits the proliferation of BCP-ALL cells. Furthermore, we report that c-Myc regulates Che-1 expression by direct binding to its promoter and describe a strict correlation between Che-1 expression and c-Myc expression. RNA-seq analyses upon Che-1 or c-Myc depletion reveal a strong overlap of the respective controlled pathways. Genomewide ChIP-seq experiments suggest that Che-1 acts as a downstream effector of c-Myc. These results identify the pivotal role of Che-1 in the control of BCP-ALL proliferation and present the protein as a possible therapeutic target in children with relapsed BCP-ALL.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Regiones Promotoras Genéticas/genética
3.
Pediatr Blood Cancer ; 63(4): 719-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26626406

RESUMEN

Medulloblastoma is the most common pediatric brain tumor. We describe a child with tuberous sclerosis complex that developed a Group 3, myc overexpressed, metastatic medulloblastoma (MB). Considering the high risk of treatment-induced malignancies, a tailored therapy, omitting radiation, was given. Based on the evidence of mammalian target of rapamycin mTORC, mTOR Complex; RAS, Rat sarcoma; RAF, rapidly accelerated fibrosarcoma (mTOR) pathway activation in the tumor, targeted therapy was applied resulting in complete remission of disease. Although the PI3K/AKT/mTOR signaling pathway plays a role in MB, we did not find TSC1/TSC2 (TSC, tuberous sclerosis complex) mutation in our patient. We speculate that a different pathway resulting in mTOR activation is the basis of both TSC and MB in this child; H&E, haematoxilin and eosin; Gd, gadolinium.


Asunto(s)
Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Esclerosis Tuberosa/complicaciones , Western Blotting , Neoplasias Cerebelosas/complicaciones , Neoplasias Cerebelosas/genética , Análisis Mutacional de ADN , Femenino , Humanos , Meduloblastoma/complicaciones , Meduloblastoma/genética , Serina-Treonina Quinasas TOR/biosíntesis , Esclerosis Tuberosa/genética
4.
J Exp Clin Cancer Res ; 43(1): 66, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424590

RESUMEN

BACKGROUND: CRISPR/Cas9 system to treat human-related diseases has achieved significant results and, even if its potential application in cancer research is improving, the application of this approach in clinical practice is still a nascent technology. MAIN BODY: CRISPR/Cas9 technology is not yet used as a single therapy to treat tumors but it can be combined with traditional treatment strategies to provide personalized gene therapy for patients. The combination with chemotherapy, radiation and immunotherapy has been proven to be a powerful means of screening, identifying, validating and correcting tumor targets. Recently, CRISPR/Cas9 technology and CAR T-cell therapies have been integrated to open novel opportunities for the production of more efficient CAR T-cells for all patients. GMP-compatible equipment and reagents are already available for several clinical-grade systems at present, creating the basis and framework for the accelerated development of novel treatment methods. CONCLUSION: Here we will provide a comprehensive collection of the actual GMP-grade CRISPR/Cas9-mediated approaches used to support cancer therapy highlighting how this technology is opening new opportunities for treating tumors.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Edición Génica/métodos , Inmunoterapia , Inmunoterapia Adoptiva , Neoplasias/genética , Neoplasias/terapia
5.
Front Immunol ; 15: 1356321, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420122

RESUMEN

Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia , Neoplasias/terapia , Sistemas de Liberación de Medicamentos , Terapia Molecular Dirigida , Receptor IGF Tipo 1
6.
J Exp Clin Cancer Res ; 43(1): 179, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926853

RESUMEN

BACKGROUND: Enhancer reprogramming plays a significant role in the heterogeneity of cancer. However, we have limited knowledge about the impact of chromatin remodeling in B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) patients, and how it affects tumorigenesis and drug response. Our research focuses on investigating the role of enhancers in sustaining oncogenic transformation in children with BCP-ALL. METHODS: We used ATAC-seq to study the accessibility of chromatin in pediatric BCP-ALL at three different stages-onset, remission, and relapse. Using a combination of computational and experimental methods, we were able to analyze the accessibility landscape and focus on the most significant cis-regulatory sites. These sites were then functionally validated through the use of Promoter capture Hi-C in a primary cell line model called LAL-B, followed by RNA-seq and genomic deletion of target sites using CRISPR-Cas9 editing. RESULTS: We found that enhancer activity changes during cancer progression and is mediated by the production of enhancer RNAs (eRNAs). CRISPR-Cas9-mediated validation of previously unknown eRNA productive enhancers demonstrated their capability to control the oncogenic activities of the MYB and DCTD genes. CONCLUSIONS: Our findings directly support the notion that productive enhancer engagement is a crucial determinant of the BCP-ALL and highlight the potential of enhancers as therapeutic targets in pediatric BCP-ALL.


Asunto(s)
Transformación Celular Neoplásica , Progresión de la Enfermedad , Elementos de Facilitación Genéticos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Niño
7.
Front Immunol ; 14: 1191908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435061

RESUMEN

Introduction: AATF/Che-1 over-expression in different tumors is well known and its effect on tumorigenicity is mainly due to its central role demonstrated in the oncogenic pathways of solid tumors, where it controls proliferation and viability. The effect exerted by tumors overexpressing Che-1 on the immune response has not yet been investigated. Methods: Starting from ChIP-sequencing data we confirmed Che-1 enrichment on Nectin-1 promoter. Several co-cultures experiments between NK-cells and tumor cells transduced by lentiviral vectors carrying Che-1-interfering sequence, analyzed by flow-cytometry have allowed a detailed characterization of NK receptors and tumor ligands expression. Results: Here, we show that Che-1 is able to modulate the expression of Nectin-1 ligand at the transcriptional level, leading to the impairment of killing activity of NK-cells. Nectin-1 down-modulation induces a modification in NK-cell ligands expression able to interact with activating receptors and to stimulate NK-cell function. In addition, NK-cells from Che-1 transgenic mice, confirming a reduced expression of activating receptors, exhibit impaired activation and a preferential immature status. Discussion: The critical equilibrium between NK-cell ligand expression on tumor cells and the interaction with NK cell receptors is affected by Che-1 over-expression and partially restored by Che-1 interference. The evidence of a new role for Che-1 as regulator of anti-tumor immunity supports the necessity to develop approaches able to target this molecule which shows a dual tumorigenic function as cancer promoter and immune response modulator.


Asunto(s)
Proteínas Portadoras , Neoplasias , Animales , Ratones , Ligandos , Ratones Transgénicos , Nectinas/genética , Neoplasias/genética , ARN Polimerasa II
8.
J Transl Med ; 10: 247, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23232072

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a plasma cell malignancy with a multifaceted immune dysfunction. Indoleamine 2,3-dioxygenase 1 (IDO1) degrades tryptophan into kynurenine (KYN), which inhibits effector T cells and promote regulatory T-cell (Treg) differentiation. It is presently unknown whether MM cells express IDO1 and whether IDO1 activity correlates with immune system impairment. METHODS: We investigated IDO1 expression in 25 consecutive patients with symptomatic MM and in 7 patients with either monoclonal gammopathy of unknown significance (MGUS; n=3) or smoldering MM (SMM; n=4). IDO1-driven tryptophan breakdown was correlated with the release of hepatocyte growth factor (HGF) and with the frequency of Treg cells and NY-ESO-1-specific CD8(+) T cells. RESULTS: KYN was increased in 75% of patients with symptomatic MM and correlated with the expansion of CD4(+)CD25(+)FoxP3(+) Treg cells and the contraction of NY-ESO-1-specific CD8(+) T cells. In vitro, primary MM cells promoted the differentiation of allogeneic CD4(+) T cells into bona fide CD4(+)CD25(hi)FoxP3(hi) Treg cells and suppressed IFN-γ/IL-2 secretion, while preserving IL-4 and IL-10 production. Both Treg expansion and inhibition of Th1 differentiation by MM cells were reverted, at least in part, by D,L-1-methyl-tryptophan, a chemical inhibitor of IDO. Notably, HGF levels were higher within the BM microenvironment of patients with IDO(+) myeloma disease compared with patients having IDO(-) MM. Mechanistically, the antagonism of MET receptor for HGF with SU11274, a MET inhibitor, prevented HGF-induced AKT phosphorylation in MM cells and translated into reduced IDO protein levels and functional activity. CONCLUSIONS: These data suggest that IDO1 expression may contribute to immune suppression in patients with MM and possibly other HGF-producing cancers.


Asunto(s)
Sistema Inmunológico/anomalías , Sistema Inmunológico/enzimología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mieloma Múltiple/enzimología , Mieloma Múltiple/inmunología , Antígenos de Neoplasias/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Diferenciación Celular/inmunología , Línea Celular Tumoral , Proliferación Celular , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Interleucina-10/metabolismo , Proteínas de la Membrana/metabolismo , Células Plasmáticas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Factor de Crecimiento Transformador beta/metabolismo , Carga Tumoral/inmunología
9.
Free Radic Biol Med ; 183: 1-13, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35283228

RESUMEN

The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Síndrome de Down , Factor 2 Relacionado con NF-E2 , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ácidos Cafeicos , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Alcohol Feniletílico/análogos & derivados
10.
Cancers (Basel) ; 13(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34439194

RESUMEN

Pathologic activation of PI3Ks and the subsequent deregulation of its downstream signaling pathway is among the most frequent events associated with cellular transformation, cancer, and metastasis. PI3Ks are also emerging as critical factors in regulating anti-tumor immunity by either promoting an immunosuppressive tumor microenvironment or by controlling the activity and the tumor infiltration of cells involved in the immune response. For these reasons, significant pharmaceutical efforts are dedicated to inhibiting the PI3K pathway, with the main goal to target the tumor and, at the same time, to enhance the anti-tumor immunity. Recent immunotherapeutic approaches involving the use of adoptive cell transfer of autologous genetically modified T cells or immune check-point inhibitors showed high efficacy. However, mechanisms of resistance to these kinds of therapy are emerging, due in part to the inhibition of effector T cell functions exerted by the immunosuppressive tumor microenvironment. Here, we first describe how inhibition of PI3K/Akt pathway contribute to enhance anti-tumor immunity and further discuss how inhibitors of the pathway are used in combination with different immunomodulatory and immunotherapeutic agents to improve anti-tumor efficacy.

11.
Cancers (Basel) ; 13(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34503178

RESUMEN

High-risk neuroblastoma (NB) is a rare childhood cancer whose aggressiveness is due to a variety of chromosomal genetic aberrations, including those conferring immune evasion. Indeed, NB cells adopt several molecular strategies to evade recognition by the immune system, including the downregulation of ligands for NK-cell-activating receptors. To date, while molecular strategies aimed at enhancing the expression of ligands for NKG2D- and DNAM-1-activating receptors have been explored, no evidence has been reported on the immunomodulatory mechanisms acting on the expression of death receptors such as Fas in NB cells. Here, we demonstrated that transient overexpression of the NF-kB p65 subunit upregulates the surface expression of Fas and PVR, the ligand of DNAM-1, thus making NB cell lines significantly more susceptible to NK-cell-mediated apoptosis, recognition, and killing. In contrast, IFNγ and TNFα treatment, although it induced the upregulation of FAS in NB cells and consequently enhanced NK-cell-mediated apoptosis, triggered immune evasion processes, including the strong upregulation of MHC class I and IDO1, both of which are involved in mechanisms leading to the impairment of a proper NK-cell-mediated killing of NB. In addition, high-resolution array CGH analysis performed in our cohort of NB patients revealed that the loss of FAS and/or PVR genes correlated with low survival independently of the disease stage. Our data identify the status of the FAS and PVR genes as prognostic biomarkers of NB that may predict the efficacy of NK-cell-based immunotherapy of NB. Overall, restoration of surface expression of Fas and PVR, through transient upregulation of NF-kB, may be a clue to a novel NK-cell-based immunotherapy of NB.

12.
Prog Neurobiol ; 196: 101892, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32795489

RESUMEN

A major challenge in neurobiology is the identification of the mechanisms by which protein misfolding leads to cellular toxicity. Many neurodegenerative disorders, in which aberrant protein conformers aggregate into pathological inclusions, present the chronic activation of the PERK branch of the unfolded protein response. The adaptive effects of the PERK pathway include reduction of translation by transient inhibition of eIF2α and antioxidant protein production via induction of Nrf2 transcription factor. In contrast, PERK prolonged activation leads to sustained reduction in protein synthesis and induction of cell death pathways. To further investigate the role of the PERK pathway in neurodegenerative disorders, we focused on Down syndrome (DS), in which aging confers a high risk of Alzheimer disease (AD). By investigating human DS frontal cortices, we found early and sustained PERK activation associated with the induction of eIF2α and ATF4 downstream signals. We also observed that the Nrf2 response is uncoupled from PERK and its antioxidant effects are repressed in a mechanism implicating the transcription repressor Bach1. The pharmacological inhibition of PERK in DS mice reduced eIF2α-related translational repression and promoted Nrf2 nuclear translocation, favoring the rescue of Nrf2/Bach1 imbalance. The further analysis of peripheral cells from living DS individuals provided strong support of the pathological link between PERK and trisomy 21. Our results suggest that failure to regulate the PERK pathway is a peculiar characteristic of DS pathology and it may represent an essential step to promote cellular dysfunction, which actively contributes in the brain to the early development of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Síndrome de Down/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Autopsia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/metabolismo , Adulto Joven
13.
J Immunother Cancer ; 9(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33737337

RESUMEN

Immune escape mechanisms employed by neuroblastoma (NB) cells include secretion of immunosuppressive factors disrupting effective antitumor immunity. The use of cellular therapy to treat solid tumors needs to be implemented. Killing activity of anti-GD2 Chimeric Antigen Receptor (CAR) T or natural killer (NK) cells against target NB cells was assessed through coculture experiments and quantified by FACS analysis. ELISA assay was used to quantify interferon-γ (IFNγ) secreted by NK and CAR T cells. Real Time PCR and Western Blot were performed to analyze gene and protein levels modifications. Transcriptional study was performed by chromatin immunoprecipitation and luciferase reporter assays on experiments of mutagenesis on the promoter sequence. NB tissue sample were analyzed by IHC and Real Time PCR to perform correlation study. We demonstrate that Indoleamine-pyrrole 2,3-dioxygenase1 (IDO1), due to its ability to convert tryptophan into kynurenines, is involved in NB resistance to activity of immune cells. In NB, IDO1 is able to inhibit the anti-tumor effect displayed by of both anti-GD2 CAR (GD2.CAR) T-cell and NK cells, mainly by impairing their IFNγ production. Furthermore, inhibition of MYCN expression in NB results into accumulation of IDO1 and consequently of kynurenines, which negatively affect the immune surveillance. Inverse correlation between IDO1 and MYCN expression has been observed in a wide cohort of NB samples. This finding was supported by the identification of a transcriptional repressive role of MYCN on IDO1 promoter. The evidence of IDO1 involvement in NB immune escape and its ability to impair NK and GD2.CAR T-cell activity contribute to clarify one of the possible mechanisms responsible for the limited efficacy of these immunotherapeutic approaches. A combined therapy of NK or GD2.CAR T-cells with IDO1 inhibitors, a class of compounds already in phase I/II clinical studies, could represent a new and still unexplored strategy capable to improve long-term efficacy of these immunotherapeutic approaches.


Asunto(s)
Gangliósidos/metabolismo , Inmunoterapia Adoptiva , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/trasplante , Activación de Linfocitos , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/terapia , Receptores Quiméricos de Antígenos/genética , Linfocitos T/trasplante , Línea Celular Tumoral , Técnicas de Cocultivo , Gangliósidos/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/enzimología , Neuroblastoma/genética , Neuroblastoma/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Escape del Tumor , Microambiente Tumoral
14.
Antioxidants (Basel) ; 9(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187268

RESUMEN

Down syndrome (DS) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans, which results from the triplication of chromosome 21. To search for biomarkers for the early detection and exploration of the disease mechanisms, here, we investigated the protein expression signature of peripheral blood mononuclear cells (PBMCs) in DS children compared with healthy donors (HD) by using an in-depth label-free shotgun proteomics approach. Identified proteins are found associated with metabolic pathways, cellular trafficking, DNA structure, stress response, cytoskeleton network, and signaling pathways. The results showed that a well-defined number of dysregulated pathways retain a prominent role in mediating DS pathological features. Further, proteomics results are consistent with published study in DS and provide evidences that increased oxidative stress and the increased induction of stress related response, is a participant in DS pathology. In addition, the expression levels of some key proteins have been validated by Western blot analysis while protein carbonylation, as marker of protein oxidation, was investigated. The results of this study propose that PBMCs from DS children might be in an activated state where endoplasmic reticulum stress and increased production of radical species are one of the primary events contributing to multiple DS pathological features.

15.
Cancer Res ; 67(4): 1645-52, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17308105

RESUMEN

The integrin alpha(6)beta(4) has been shown to facilitate key functions of carcinoma cells, including their ability to migrate, invade, and evade apoptosis. The mechanism involved seems to be a profound effect of alpha(6)beta(4) on specific signaling pathways, especially the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. An intimate relationship between alpha(6)beta(4) and growth factor receptors may explain this effect of alpha(6)beta(4) on signaling. Previously, we showed that alpha(6)beta(4) and ErbB-2 can function synergistically to activate the PI3K/Akt pathway. Given that ErbB-2 can activate PI3K only when it heterodimerizes with other members of the epidermal growth factor receptor family, these data imply that other receptors cooperate in this process. Here, we report that alpha(6)beta(4) can regulate the expression of ErbB-3 using several different models and that the consequent formation of an ErbB-2/ErbB-3 heterodimer promotes the alpha(6)beta(4)-dependent activation of PI3K/Akt and the ability of this integrin to impede apoptosis of carcinoma cells. Our data also support the hypothesis that alpha(6)beta(4) can regulate ErbB-3 expression at the translational level as evidenced by the findings that alpha(6)beta(4) does not increase ErbB-3 mRNA significantly, and that this regulation is both rapamycin sensitive and dependent on eukaryotic translation initiation factor 4E. These findings provide one mechanism to account for the activation of PI3K by alpha(6)beta(4) and they also provide insight into the regulation of ErbB-3 in carcinoma cells.


Asunto(s)
Integrina alfa6beta4/metabolismo , Receptor ErbB-3/biosíntesis , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Línea Celular Tumoral , Dimerización , Activación Enzimática , Factor 4F Eucariótico de Iniciación/metabolismo , Humanos , Integrina alfa6beta4/biosíntesis , Ratones , Células 3T3 NIH , Neurregulina-1/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Transducción de Señal
16.
Cell Cycle ; 17(11): 1286-1290, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29943642

RESUMEN

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common malignancy in childhood. Despite the high cure-rate, identifying new druggable molecular targets is still of great interest. In a cohort of BCP-ALL pediatric patients, irrespectively of the molecule/karyotype lesions found, we recently observed high expression of c-Myc and Che-1/AATF, which disappears at time of remission. Study of the molecular mechanisms involved in this co-expression revealed that Che-1 expression was crucial for induction of blast-cell proliferation driven by c-Myc. Furthermore, Che-1/AATF silencing in primary BCP-ALL cell lines improves responsiveness to chemotherapy. These data individuate Che-1 as a possible novel target in the treatment of BCP-ALL able to affect c-Myc-driven tumorigenicity.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/genética , Transcripción Genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Retroalimentación Fisiológica , Humanos , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Proteínas Represoras/metabolismo
17.
J Exp Clin Cancer Res ; 37(1): 239, 2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30261904

RESUMEN

BACKGROUND: The mechanism by which c-Myc exerts its oncogenic functions is not completely clear and different hypotheses are still under investigation. The knowledge of the capacity of c-Myc to bind exclusively E-box sequences determined the discrepancy between, on the one hand, genomic studies showing the binding of c-Myc to all active promoters and, on the other hand, the evidence that only 60% or less of the binding sites have E-box sequences. MAIN BODY: In this review, we provide support to the hypothesis that the cooperation of c-Myc with transcriptional cofactors mediates c-Myc-induced cellular functions. We produce evidence that recently identified cofactors are involved in c-Myc control of survival mechanisms of cancer cells. CONCLUSION: The identification of new c-Myc cofactors could favor the development of therapeutic strategies able to compensate the difficulty of targeting c-Myc.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética , Elementos E-Box/genética , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional
18.
Breast Cancer Res ; 9(1): 203, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17319974

RESUMEN

Integrin alpha6beta4 is mostly expressed in epithelial tissues and endothelial and Schwann cells. Expression of alpha6beta4 is increased in many epithelial tumours, implicating its involvement in tumour malignancy. Moreover, this integrin activates several key signalling molecules in carcinoma cells, but its ability to activate the phosphatidylinositol 3-kinase/Akt pathway is among the mechanisms by which alpha6beta4 integrin regulates tumour behaviour. In this review we discuss the biological and clinical features of alpha6beta4 integrin that allow it to promote tumour survival and progression of mammary tumours.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma/patología , Integrina alfa6beta4/fisiología , Movimiento Celular , Supervivencia Celular , Progresión de la Enfermedad , Femenino , Humanos , Transducción de Señal
19.
Clin Cancer Res ; 12(11 Pt 1): 3280-7, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16740748

RESUMEN

PURPOSE: The alpha6beta4 integrin, a laminin receptor, has been implicated from many studies in tumor progression and invasion. We showed that the beta4 integrin subunit associates with the ErbB-2 tyrosine kinase in human mammary carcinoma cell lines and that its overexpression in NIH3T3/ErbB-2-transformed cells causes a constitutive activation of phosphatidylinositol 3-kinase (PI3K), inducing a strong increase of their invasive capacity. In this study, we investigated the biological consequences of interference with the endogenous beta4 integrin subunit expression. EXPERIMENTAL DESIGN: In vitro and in vivo tumor growth and the biochemical consequences of beta4 integrin inactivation were studied in mammary tumor cells by using short hairpin RNA approach. RESULTS: Our data show that tumor growth of mammary tumor cells strictly depends on beta4 expression, confirming the relevance of beta4 protein in these cells. Moreover, interference with beta4 expression significantly reduces endogenous PI3K activity and AKT and mammalian target of rapamycin phosphorylation. Accordingly, with these results and considering that PI3K activity in mammary tumor plays a relevant role in hormone resistance, we asked whether beta4 expression might be relevant for hormone responsiveness in these cells. Data reported indicate that the interference with endogenous beta4 expression, upon hormone deprivation, induces caspase-9 and cytochrome c-mediated apoptosis, which is enhanced upon tamoxifen treatment. On the other hand, the expression of myr-AKT in MCF7 beta4-short hairpin RNA cells rescues the cells from apoptosis in the absence of hormones and upon tamoxifen treatment. CONCLUSIONS: Overall, these results confirm the relevance of beta4 expression in mammary tumors and indicate this integrin as a relevant target for tumor therapy.


Asunto(s)
Apoptosis , Neoplasias de la Mama/metabolismo , Integrina beta4/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Integrina beta4/efectos de los fármacos , Integrina beta4/genética , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR , Tamoxifeno/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Oncotarget ; 7(33): 52900-52911, 2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27174915

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor in children. Despite therapeutic advancements, high-risk groups still present significant mortality. A deeper knowledge of the signaling pathways contributing to MB formation and aggressiveness would help develop new successful therapies. The target of rapamycin, mTOR signaling, is known to be involved in MB and is already targetable in the clinical setting. Furthermore, mTOR is a master metabolic regulator able to control cell growth versus autophagy decisions in conditions of amino-acid deprivation that can be due to IDO1 enzymatic activity. IDO1 has been also implicated in the regulation of inflammation, as well as of T cell-mediated immune responses, in a variety of pathological conditions, including brain tumors. In particular, IDO1 induces expansion of regulatory T-cells (Treg), preventing immune response against tumor cells. Analysis of 27 MB tissue specimens for the expression of both mTOR and IDO1 showed their widespread expression in all samples. Testing their cooperation in vitro, a significant involvement of IDO1 in mTOR immunogenic pathway was found, able to counteract the aim of rapamycin treatment. In MB cell lines, inhibition of mTOR strongly induced IDO1 expression and activity, corroborating its ability to recruit Treg cells in the tumor microenvironment. The mTOR/IDO1 cross talk was found to be strictly specific of MB cells. We demonstrated that mTOR pathway cross talks with IDO1 pathway to promote MB immune escape, possibly contributing to failure of mTOR- targeted therapy.


Asunto(s)
Neoplasias Cerebelosas/genética , Resistencia a Antineoplásicos/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Meduloblastoma/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/metabolismo , Niño , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Lactante , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Sirolimus/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA