Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(6): 1465-1477.e17, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491388

RESUMEN

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.


Asunto(s)
Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Regiones Promotoras Genéticas/genética , Transcriptoma/genética , Bases de Datos Genéticas , Humanos , RNA-Seq/métodos
2.
Nature ; 578(7793): 102-111, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025015

RESUMEN

The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.


Asunto(s)
Genoma Humano/genética , Mutación/genética , Neoplasias/genética , Roturas del ADN , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Mutación INDEL
3.
Nature ; 578(7793): 129-136, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025019

RESUMEN

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , ARN/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias , Genoma Humano , Genómica , Humanos , Transcriptoma
4.
J Exp Bot ; 75(1): 274-299, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804484

RESUMEN

Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.


Asunto(s)
Antineoplásicos , Catharanthus , Plantas Medicinales , Alcaloides de Triptamina Secologanina , Plantas Medicinales/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Antineoplásicos/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Nature ; 551(7678): 51-56, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29094699

RESUMEN

Imaging and chromosome conformation capture studies have revealed several layers of chromosome organization, including segregation into megabase-sized active and inactive compartments, and partitioning into sub-megabase domains (TADs). It remains unclear, however, how these layers of organization form, interact with one another and influence genome function. Here we show that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding. TADs and associated Hi-C peaks vanish globally, even in the absence of transcriptional changes. By contrast, compartmental segregation is preserved and even reinforced. Strikingly, the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape. These observations demonstrate that the three-dimensional organization of the genome results from the interplay of two independent mechanisms: cohesin-independent segregation of the genome into fine-scale compartments, defined by chromatin state; and cohesin-dependent formation of TADs, possibly by loop extrusion, which helps to guide distant enhancers to their target genes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Posicionamiento de Cromosoma , Animales , Cromatina/química , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Hígado/metabolismo , Ratones , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Cohesinas
8.
Nucleic Acids Res ; 48(D1): D77-D83, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31665515

RESUMEN

Expression Atlas is EMBL-EBI's resource for gene and protein expression. It sources and compiles data on the abundance and localisation of RNA and proteins in various biological systems and contexts and provides open access to this data for the research community. With the increased availability of single cell RNA-Seq datasets in the public archives, we have now extended Expression Atlas with a new added-value service to display gene expression in single cells. Single Cell Expression Atlas was launched in 2018 and currently includes 123 single cell RNA-Seq studies from 12 species. The website can be searched by genes within or across species to reveal experiments, tissues and cell types where this gene is expressed or under which conditions it is a marker gene. Within each study, cells can be visualized using a pre-calculated t-SNE plot and can be coloured by different features or by cell clusters based on gene expression. Within each experiment, there are links to downloadable files, such as RNA quantification matrices, clustering results, reports on protocols and associated metadata, such as assigned cell types.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Especificidad de Órganos , Análisis de la Célula Individual/métodos , Interfaz Usuario-Computador
9.
Nucleic Acids Res ; 47(D1): D711-D715, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30357387

RESUMEN

ArrayExpress (https://www.ebi.ac.uk/arrayexpress) is an archive of functional genomics data from a variety of technologies assaying functional modalities of a genome, such as gene expression or promoter occupancy. The number of experiments based on sequencing technologies, in particular RNA-seq experiments, has been increasing over the last few years and submissions of sequencing data have overtaken microarray experiments in the last 12 months. Additionally, there is a significant increase in experiments investigating single cells, rather than bulk samples, known as single-cell RNA-seq. To accommodate these trends, we have substantially changed our submission tool Annotare which, along with raw and processed data, collects all metadata necessary to interpret these experiments. Selected datasets are re-processed and loaded into our sister resource, the value-added Expression Atlas (and its component Single Cell Expression Atlas), which not only enables users to interpret the data easily but also serves as a test for data quality. With an increasing number of studies that combine different assay modalities (multi-omics experiments), a new more general archival resource the BioStudies Database has been developed, which will eventually supersede ArrayExpress. Data submissions will continue unchanged; all existing ArrayExpress data will be incorporated into BioStudies and the existing accession numbers and application programming interfaces will be maintained.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Bases de Datos Genéticas , RNA-Seq/métodos
10.
Adv Exp Med Biol ; 1295: 271-299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33543464

RESUMEN

Multiple studies about tumor biology have revealed the determinant role of the tumor microenvironment in cancer progression, resulting from the dynamic interactions between tumor cells and surrounding stromal cells within the extracellular matrix. This malignant microenvironment highly impacts the efficacy of anticancer nanoparticles by displaying drug resistance mechanisms, as well as intrinsic physical and biochemical barriers, which hamper their intratumoral accumulation and biological activity.Currently, two-dimensional cell cultures are used as the initial screening method in vitro for testing cytotoxic nanocarriers. However, this fails to mimic the tumor heterogeneity, as well as the three-dimensional tumor architecture and pathophysiological barriers, leading to an inaccurate pharmacological evaluation.Biomimetic 3D in vitro tumor models, on the other hand, are emerging as promising tools for more accurately assessing nanoparticle activity, owing to their ability to recapitulate certain features of the tumor microenvironment and thus provide mechanistic insights into nanocarrier intratumoral penetration and diffusion rates.Notwithstanding, in vivo validation of nanomedicines remains irreplaceable at the preclinical stage, and a vast variety of more advanced in vivo tumor models is currently available. Such complex animal models (e.g., genetically engineered mice and patient-derived xenografts) are capable of better predicting nanocarrier clinical efficiency, as they closely resemble the heterogeneity of the human tumor microenvironment.Herein, the development of physiologically more relevant in vitro and in vivo tumor models for the preclinical evaluation of anticancer nanoparticles will be discussed, as well as the current limitations and future challenges in clinical translation.


Asunto(s)
Antineoplásicos , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nanomedicina , Esferoides Celulares , Microambiente Tumoral
11.
Nucleic Acids Res ; 46(D1): D246-D251, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29165655

RESUMEN

Expression Atlas (http://www.ebi.ac.uk/gxa) is an added value database that provides information about gene and protein expression in different species and contexts, such as tissue, developmental stage, disease or cell type. The available public and controlled access data sets from different sources are curated and re-analysed using standardized, open source pipelines and made available for queries, download and visualization. As of August 2017, Expression Atlas holds data from 3,126 studies across 33 different species, including 731 from plants. Data from large-scale RNA sequencing studies including Blueprint, PCAWG, ENCODE, GTEx and HipSci can be visualized next to each other. In Expression Atlas, users can query genes or gene-sets of interest and explore their expression across or within species, tissues, developmental stages in a constitutive or differential context, representing the effects of diseases, conditions or experimental interventions. All processed data matrices are available for direct download in tab-delimited format or as R-data. In addition to the web interface, data sets can now be searched and downloaded through the Expression Atlas R package. Novel features and visualizations include the on-the-fly analysis of gene set overlaps and the option to view gene co-expression in experiments investigating constitutive gene expression across tissues or other conditions.


Asunto(s)
Bases de Datos Genéticas , Animales , Perfilación de la Expresión Génica , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas/genética , Plantas/metabolismo , Proteómica , Análisis de Secuencia de ARN , Especificidad de la Especie , Interfaz Usuario-Computador
12.
Bioinformatics ; 33(14): 2218-2220, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28369191

RESUMEN

MOTIVATION: The exponential growth of publicly available RNA-sequencing (RNA-Seq) data poses an increasing challenge to researchers wishing to discover, analyse and store such data, particularly those based in institutions with limited computational resources. EMBL-EBI is in an ideal position to address these challenges and to allow the scientific community easy access to not just raw, but also processed RNA-Seq data. We present a Web service to access the results of a systematically and continually updated standardized alignment as well as gene and exon expression quantification of all public bulk (and in the near future also single-cell) RNA-Seq runs in 264 species in European Nucleotide Archive, using Representational State Transfer. RESULTS: The RNASeq-er API (Application Programming Interface) enables ontology-powered search for and retrieval of CRAM, bigwig and bedGraph files, gene and exon expression quantification matrices (Fragments Per Kilobase Of Exon Per Million Fragments Mapped, Transcripts Per Million, raw counts) as well as sample attributes annotated with ontology terms. To date over 270 00 RNA-Seq runs in nearly 10 000 studies (1PB of raw FASTQ data) in 264 species in ENA have been processed and made available via the API. AVAILABILITY AND IMPLEMENTATION: The RNASeq-er API can be accessed at http://www.ebi.ac.uk/fg/rnaseq/api . The commands used to analyse the data are available in supplementary materials and at https://github.com/nunofonseca/irap/wiki/iRAP-single-library . CONTACT: rnaseq@ebi.ac.uk ; rpetry@ebi.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Eucariontes/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma , Animales , Bases de Datos Genéticas , Expresión Génica , Ontología de Genes , Humanos , Internet
13.
Nucleic Acids Res ; 44(D1): D746-52, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26481351

RESUMEN

Expression Atlas (http://www.ebi.ac.uk/gxa) provides information about gene and protein expression in animal and plant samples of different cell types, organism parts, developmental stages, diseases and other conditions. It consists of selected microarray and RNA-sequencing studies from ArrayExpress, which have been manually curated, annotated with ontology terms, checked for high quality and processed using standardised analysis methods. Since the last update, Atlas has grown seven-fold (1572 studies as of August 2015), and incorporates baseline expression profiles of tissues from Human Protein Atlas, GTEx and FANTOM5, and of cancer cell lines from ENCODE, CCLE and Genentech projects. Plant studies constitute a quarter of Atlas data. For genes of interest, the user can view baseline expression in tissues, and differential expression for biologically meaningful pairwise comparisons-estimated using consistent methodology across all of Atlas. Our first proteomics study in human tissues is now displayed alongside transcriptomics data in the same tissues. Novel analyses and visualisations include: 'enrichment' in each differential comparison of GO terms, Reactome, Plant Reactome pathways and InterPro domains; hierarchical clustering (by baseline expression) of most variable genes and experimental conditions; and, for a given gene-condition, distribution of baseline expression across biological replicates.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Plantas/metabolismo , Proteínas/metabolismo , Proteómica , Animales , Línea Celular Tumoral , Humanos , Plantas/genética , Interfaz Usuario-Computador
14.
Nucleic Acids Res ; 44(D1): D1133-40, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26553803

RESUMEN

Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼ 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta , Plantas/metabolismo , Expresión Génica , Variación Genética , Genómica , Internet , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Plantas/genética
15.
Genome Res ; 24(11): 1797-807, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25122613

RESUMEN

The genetic code is an abstraction of how mRNA codons and tRNA anticodons molecularly interact during protein synthesis; the stability and regulation of this interaction remains largely unexplored. Here, we characterized the expression of mRNA and tRNA genes quantitatively at multiple time points in two developing mouse tissues. We discovered that mRNA codon pools are highly stable over development and simply reflect the genomic background; in contrast, precise regulation of tRNA gene families is required to create the corresponding tRNA transcriptomes. The dynamic regulation of tRNA genes during development is controlled in order to generate an anticodon pool that closely corresponds to messenger RNAs. Thus, across development, the pools of mRNA codons and tRNA anticodons are invariant and highly correlated, revealing a stable molecular interaction interlocking transcription and translation.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , ARN Mensajero/genética , ARN de Transferencia/genética , Transcriptoma , Animales , Anticodón/genética , Secuencia de Bases , Encéfalo/embriología , Inmunoprecipitación de Cromatina/métodos , Codón/genética , Simulación por Computador , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hígado/embriología , Masculino , Ratones Endogámicos C57BL , Modelos Genéticos , Sistemas de Lectura Abierta/genética , Análisis de Componente Principal , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Factores de Tiempo
16.
Nucleic Acids Res ; 42(Database issue): D926-32, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24304889

RESUMEN

Expression Atlas (http://www.ebi.ac.uk/gxa) is a value-added database providing information about gene, protein and splice variant expression in different cell types, organism parts, developmental stages, diseases and other biological and experimental conditions. The database consists of selected high-quality microarray and RNA-sequencing experiments from ArrayExpress that have been manually curated, annotated with Experimental Factor Ontology terms and processed using standardized microarray and RNA-sequencing analysis methods. The new version of Expression Atlas introduces the concept of 'baseline' expression, i.e. gene and splice variant abundance levels in healthy or untreated conditions, such as tissues or cell types. Differential gene expression data benefit from an in-depth curation of experimental intent, resulting in biologically meaningful 'contrasts', i.e. instances of differential pairwise comparisons between two sets of biological replicates. Other novel aspects of Expression Atlas are its strict quality control of raw experimental data, up-to-date RNA-sequencing analysis methods, expression data at the level of gene sets, as well as genes and a more powerful search interface designed to maximize the biological value provided to the user.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genómica , Humanos , Internet , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas/genética , Proteínas/metabolismo , Isoformas de ARN/metabolismo , Análisis de Secuencia de ARN
17.
Genome Res ; 21(12): 2224-41, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21926179

RESUMEN

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/.


Asunto(s)
Genoma/fisiología , Genómica/métodos , Análisis de Secuencia de ADN/métodos
18.
J Control Release ; 373: 617-639, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002799

RESUMEN

Lipid-based complex injectables are renowned for their effectiveness in delivering drugs, with many approved products. While significant strides have been made in formulating nanosystems for small molecular weight drugs, a pivotal breakthrough emerged with the recognition of lipid nanoparticles as a promising platform for delivering nucleic acids. This finding has paved the way for tackling long-standing challenges in molecular and delivery aspects (e.g., mRNA stability, intracellular delivery) that have impeded the clinical translation of gene therapy, especially in the realm of immunotherapy. Nonetheless, developing and implementing new lipid-based delivery systems pose significant challenges, as industrial manufacturing of these formulations often involves complex, multi-batch processes, giving rise to issues related to scalability, stability, sterility, and regulatory compliance. To overcome these obstacles, embracing the principles of quality-by-design (QbD) is imperative. Furthermore, adopting cutting-edge manufacturing and process analytical tools (PAT) that facilitate the transition from batch to continuous production is essential. Herein, the key milestones and insights derived from the development of currently approved lipid- nanosystems will be explored. Additionally, a comprehensive and critical overview of the latest technologies and regulatory guidelines that underpin the creation of more efficient, scalable, and flexible manufacturing processes for complex lipid-based nanoformulations will be provided.


Asunto(s)
Lípidos , Nanopartículas , Lípidos/química , Humanos , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Animales , Inyecciones , Composición de Medicamentos , Industria Farmacéutica
19.
Bioinformatics ; 28(24): 3169-77, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23060614

RESUMEN

MOTIVATION: A ubiquitous and fundamental step in high-throughput sequencing analysis is the alignment (mapping) of the generated reads to a reference sequence. To accomplish this task, numerous software tools have been proposed. Determining the mappers that are most suitable for a specific application is not trivial. RESULTS: This survey focuses on classifying mappers through a wide number of characteristics. The goal is to allow practitioners to compare the mappers more easily and find those that are most suitable for their specific problem.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Algoritmos , Variación Genética , Humanos , Alineación de Secuencia , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
20.
Acc Chem Res ; 45(7): 1163-71, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22568781

RESUMEN

RNA interference (RNAi) is a specific gene-silencing mechanism that can be mediated by the delivery of chemical synthesized small-interfering RNA (siRNA). RNAi might constitute a novel therapeutic approach for cancer treatment because researchers can easily design siRNA molecules to inhibit, specifically and potently, the expression of any protein involved in tumor initiation and progression. Despite all the potential of siRNA as a novel class of drugs, the limited cellular uptake, low biological stability, and unfavorable pharmacokinetics of siRNAs have limited their application in the clinic. Indeed, blood nucleases easily degrade naked siRNAs, and the kidneys rapidly eliminate these molecules. Furthermore, at the level of target cells, the negative charge and hydrophilicity of siRNAs strongly impair their cellular internalization. Therefore, the translation of siRNA to the clinical setting is highly dependent on the development of an appropriate delivery system, able to ameliorate siRNA pharmacokinetic and biodistribution properties. In this regard, major advances have been achieved with lipid-based nanocarriers sterically stabilized by poly(ethylene glycol) (PEG), such as the stabilized nucleic acid lipid particles (SNALP). However, PEG has not solved all the major problems associated with siRNA delivery. In this Account, the major problems associated with PEGylated lipid-based nanoparticles, and the different strategies to overcome them are discussed. Although PEG has revolutionized the field of nanocarriers, cumulative experience has revealed that upon repeated administration, PEGylated liposomes lose their ability to circulate over long periods in the bloodstream, a phenomenon known as accelerated blood clearance. In addition, PEGylation impairs the internalization of the siRNA into the target cell and its subsequent escape from the endocytic pathway, which reduces biological activity. An interesting approach to overcome such limitations relies on the design of novel exchangeable PEG-derivatized lipids. After systemic administration, these lipids can be released from the nanoparticle surface. Moreover, the design and synthesis of novel cationic lipids that are more fusogenic and the use of internalizing targeting ligands have contributed to the emergence of novel lipid-based nanoparticles with remarkable transfection efficiency.


Asunto(s)
Lípidos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , Humanos , Liposomas/química , Polietilenglicoles/química , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , Distribución Tisular , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA