Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 93(suppl 3): e20191458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34550197

RESUMEN

Tawny-bellied Seedeater (Sporophila hypoxantha) is an endangered (in Brazil) grassland dependent species, whose breeding success remains poorly known hampering conservation measures on its breeding grounds. Here we analyze the nest survival of the species in relation to temporal and environmental variables over three breeding seasons in hilly dry grasslands in southern Brazil. The apparent nest success was 40%, and MARK survival 20%. Predation was the main cause of failure, affecting 55% of the unsuccessful nests, followed by desertion, infestation by Philornis fly larvae, cattle trampling and burning. The productivity was 1.77 young per pair. Best models include time-specific factors (nest age and time of breeding season), reflected by a gradual reduction in nest survival over the nesting cycle, accompanied by an increase in temperature, subcutaneous larvae infestation, and predation. Nest site characteristics did not influence nest survival. Predation is more prevalent in the nestling rearing period than during incubation. This tendency may be caused by an increase in the activity in the nests, as is predicted by the Skutch hypothesis. The conclusion that time-specific factors influence nest survival more than ecological variables is important to plan on seasonally dependent conservation and management measures.


Asunto(s)
Comportamiento de Nidificación , Passeriformes , Animales , Bovinos , Ecosistema , Fitomejoramiento , Conducta Predatoria
2.
J Anim Ecol ; 89(2): 423-435, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31571223

RESUMEN

Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector-transmitted parasites. Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity of Leucocytozoon (an avian blood parasite) at site and species levels across the New World. To explore spatial patterns in infection probability and lineage diversity for Leucocytozoon parasites, we surveyed 69 bird communities from Alaska to Patagonia. Using phylogenetic Bayesian hierarchical models and high-resolution satellite remote-sensing data, we determined the relative influence of climate, landscape, geography and host phylogeny on regional parasite community assembly. Infection rates and parasite diversity exhibited considerable variation across regions in the Americas. In opposition to the latitudinal gradient hypothesis, both the diversity and prevalence of Leucocytozoon parasites decreased towards the equator. Host relatedness and traits known to promote vector exposure neither predicted infection probability nor parasite diversity. Instead, the probability of a bird being infected with Leucocytozoon increased with increasing vegetation cover (NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages decreased with increasing NDVI. Infection rates and parasite diversity also tended to be higher in cooler regions and higher latitudes. Whereas temperature partially constrains Leucocytozoon diversity and infection rates, landscape features, such as vegetation cover and water body availability, play a significant role in modulating the probability of a bird being infected. This suggests that, for Leucocytozoon, the barriers to host shifting and parasite host range expansion are jointly determined by environmental filtering and landscape, but not by host phylogeny. Our results show that integrating host traits, host ancestry, bioclimatic data and microhabitat characteristics that are important for vector reproduction are imperative to understand and predict infection prevalence and diversity of vector-transmitted parasites. Unlike other vector-transmitted diseases, our results show that Leucocytozoon diversity and prevalence will likely decrease with warming temperatures.


Asunto(s)
Enfermedades de las Aves/epidemiología , Haemosporida/genética , Infecciones , Parásitos , Alaska , Animales , Teorema de Bayes , Aves , Filogenia , Probabilidad
3.
J Exp Zool B Mol Dev Evol ; 332(3-4): 92-98, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31004403

RESUMEN

In vocal learning birds, memorization and song production rely on a set of telencephalic nuclei referred to as the song control system. Seasonal changes in song production are correlated with changes in the volume of the song control nuclei and are influenced by photoperiodic conditions and hormonal cues. The seasonal volume changes in the avian brain that controls singing are thought to involve regulation of neuronal replacement, which is a striking example of neuronal plasticity. The Rufous-bellied Thrush (Turdus rufiventris) is a seasonally breeding bird that actively sings during the spring and summer (breeding season) and is relatively silent in the fall, yet possible mechanisms behind the periodic changes in song production remain unknown. Here, we have examined two song control nuclei: High vocal center (HVC) and robust nucleus of arcopallium (RA) in fall males, spring males, and fall females of Rufous-bellied Thrush. The cytoarchitectonic organization was analyzed and quantified from Nissl-stained sections, and gene expression of song nuclei markers was examined by in situ hybridization during breeding and nonbreeding seasons. We observed a reduction in HVC volume and reductions in parvalbumin, and RGS4 expression in HVC and RA in males during the nonbreeding season. These findings provide evidence of seasonal changes in the song system of a representative tropical-breeding Turdidae species that does not maintain territories or mate bonding, setting the histological and molecular groundwork for future studies aimed at better understanding of song nuclei changes in seasonally breeding songbirds.


Asunto(s)
Encéfalo/anatomía & histología , Estaciones del Año , Pájaros Cantores/fisiología , Vocalización Animal/fisiología , Animales , Encéfalo/fisiología
4.
Mol Ecol ; 28(10): 2681-2693, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959568

RESUMEN

Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance-decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host-parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.


Asunto(s)
Aves/parasitología , Ecología , Interacciones Huésped-Parásitos , Malaria Aviar/parasitología , Animales , Haemosporida/genética , Haemosporida/patogenicidad , Especificidad del Huésped , Filogenia , América del Sur
5.
Int J Parasitol ; 51(9): 719-728, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33722680

RESUMEN

Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.


Asunto(s)
Enfermedades de las Aves , Haemosporida , Malaria Aviar , Parásitos , Plasmodium , Animales , Enfermedades de las Aves/epidemiología , Bosques , Haemosporida/genética , Humanos , Malaria Aviar/epidemiología , Filogenia , Plasmodium/genética , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA