Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Res ; 100(12): 2174-2186, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056598

RESUMEN

Sleep problems are prevalent in autism spectrum disorder (ASD), can be observed before diagnosis, and are associated with increased restricted and repetitive behaviors. Therefore, sleep abnormalities may be a core feature of the disorder, but the developmental trajectory remains unknown. Animal models provide a unique opportunity to understand sleep ontogenesis in ASD. Previously we showed that adult mice with a truncation in the high-confidence ASD gene Shank3 (Shank3∆C ) recapitulate the clinical sleep phenotype. In this study we used longitudinal electro-encephalographic (EEG) recordings to define, for the first time, changes in sleep from weaning to young adulthood in an ASD mouse model. We show that Shank3∆C male mice sleep less overall throughout their lifespan, have increased rapid eye movement (REM) sleep early in life despite significantly reduced non-rapid eye movement (NREM) sleep, and have abnormal responses to increased sleep pressure that emerge during a specific developmental period. We demonstrate that the ability to fall asleep quickly in response to sleep loss develops normally between 24 and 30 days in mice. However, mutants are unable to reduce sleep latency after periods of prolonged waking and maintain the same response to sleep loss regardless of age. This phenomenon seems independent of homeostatic NREM sleep slow-wave dynamics. Overall, our study recapitulates both preclinical models and clinical studies showing that reduced sleep is consistently associated with ASD and suggests that problems falling asleep may reflect abnormal development of sleep and arousal mechanisms.


Asunto(s)
Trastorno del Espectro Autista , Animales , Masculino , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/complicaciones , Sueño , Electroencefalografía , Sueño REM/fisiología , Nivel de Alerta/fisiología , Mamíferos , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética
2.
iScience ; 27(9): 110752, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39280614

RESUMEN

Sleep deprivation (SD) has negative effects on brain and body function. Sleep problems are prevalent in a variety of disorders, including neurodevelopmental and psychiatric conditions. Thus, understanding the molecular consequences of SD is of fundamental importance in biology. In this study, we present the first simultaneous bulk and single-nuclear RNA sequencing characterization of the effects of SD in the male mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of over 1500 genes, particularly those involved in splicing and RNA binding. At both the global and cell-type specific level, SD has a large repressive effect on transcription, downregulating thousands of genes and transcripts. As a resource we provide extensive characterizations of cell-types, genes, transcripts, and pathways affected by SD. We also provide publicly available tutorials aimed at allowing readers adapt analyses performed in this study to their own datasets.

3.
bioRxiv ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39229182

RESUMEN

Sleep is an essential, tightly regulated biological function. Sleep is also a homeostatic process, with the need to sleep increasing as a function of being awake. Acute sleep deprivation (SD) increases sleep need, and subsequent recovery sleep (RS) discharges it. SD is known to alter brain gene expression in rodents, but it remains unclear which changes are linked to sleep homeostasis, SD-related impairments, or non-sleep-specific effects. To investigate this question, we analyzed RNA-seq data from adult wild-type male mice subjected to 3 and 5-6 hours of SD and 2 and 6 hours of RS after SD. We hypothesized molecular changes associated with sleep homeostasis mirror sleep pressure dynamics as defined by brain electrical activity, peaking at 5-6 hours of SD, and are no longer differentially expressed after 2 hours of RS. We report 5-6 hours of SD produces the largest effect on gene expression, affecting approximately half of the cortical transcriptome, with most differentially expressed genes (DEGs) downregulated. The majority of DEGs normalize after 2 hours of RS and are involved in redox metabolism, chromatin regulation, and DNA damage/repair. Additionally, RS affects gene expression related to mitochondrial metabolism and Wnt-signaling, potentially contributing to its restorative effects. DEGs associated with cholesterol metabolism and stress response do not normalize within 6 hours and may be non-sleep-specific. Finally, DEGs involved in insulin signaling, MAPK signaling, and RNA-binding may mediate the impairing effects of SD. Overall, our results offer insight into the molecular mechanisms underlying sleep homeostasis and the broader effects of SD.

4.
Clin Pharmacol Ther ; 116(1): 235-246, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38711199

RESUMEN

Cross-species differences in drug transport and metabolism are linked to poor translation of preclinical pharmacokinetic and toxicology data to humans, often resulting in the failure of new chemical entities (NCEs) during clinical drug development. Specifically, inaccurate prediction of renal clearance and renal accumulation of NCEs due to differential abundance of enzymes and transporters in kidneys can lead to differences in pharmacokinetics and toxicity between experimental animals and humans. We carried out liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based protein quantification of 78 membrane drug-metabolizing enzymes and transporters (DMETs) in the kidney membrane fractions of humans, rats, and mice for characterization of cross-species and sex-dependent differences. In general, majority of DMET proteins were higher in rodents than in humans. Significant cross-species differences were observed in 30 out of 33 membrane DMET proteins quantified in all three species. Although no significant sex-dependent differences were observed in humans, the abundance of 28 and 46 membrane proteins showed significant sex dependence in rats and mice, respectively. These cross-species and sex-dependent quantitative abundance data are valuable for gaining a mechanistic understanding of drug renal disposition and accumulation. Further, these data can also be integrated into systems pharmacology tools, such as physiologically based pharmacokinetic models, to enhance the interpretation of preclinical pharmacokinetic and toxicological data.


Asunto(s)
Riñón , Proteínas de Transporte de Membrana , Especificidad de la Especie , Espectrometría de Masas en Tándem , Animales , Humanos , Masculino , Femenino , Riñón/metabolismo , Ratones , Ratas , Proteínas de Transporte de Membrana/metabolismo , Factores Sexuales , Cromatografía Liquida/métodos , Preparaciones Farmacéuticas/metabolismo , Evaluación Preclínica de Medicamentos/métodos
5.
Neurobiol Sleep Circadian Rhythms ; 14: 100088, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36632570

RESUMEN

Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.

6.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36712085

RESUMEN

Sleep deprivation (SD) results in profound cellular and molecular changes in the adult mammalian brain. Some of these changes may result in, or aggravate, brain disease. However, little is known about how SD impacts gene expression in developing animals. We examined the transcriptional response in the prefrontal cortex (PFC) to SD across postnatal development in male mice. We used RNA sequencing to identify functional gene categories that were specifically impacted by SD. We find that SD has dramatically different effects on PFC genes depending on developmental age. Gene expression differences after SD fall into 3 categories: present at all ages (conserved), present when mature sleep homeostasis is first emerging, and those unique to certain ages in adults. Developmentally conserved gene expression was limited to a few functional categories, including Wnt-signaling which suggests that this pathway is a core mechanism regulated by sleep. In younger ages, genes primarily related to growth and development are affected while changes in genes related to metabolism are specific to the effect of SD in adults.

7.
Neurobiol Sleep Circadian Rhythms ; 14: 100092, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37020466

RESUMEN

Sleep deprivation (SD) results in profound cellular and molecular changes in the adult mammalian brain. Some of these changes may result in, or aggravate, brain disease. However, little is known about how SD impacts gene expression in developing animals. We examined the transcriptional response in the prefrontal cortex (PFC) to SD across postnatal development in male mice. We used RNA sequencing to identify functional gene categories that were specifically impacted by SD. We find that SD has dramatically different effects on PFC genes depending on developmental age. Gene expression differences after SD fall into 3 categories: present at all ages (conserved), present when mature sleep homeostasis is first emerging, and those unique to certain ages. Developmentally conserved gene expression was limited to a few functional categories, including Wnt-signaling which suggests that this pathway is a core mechanism regulated by sleep. In younger ages, genes primarily related to growth and development are affected while changes in genes related to metabolism are specific to the effect of SD in adults.

8.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076891

RESUMEN

Sleep deprivation (SD) has negative effects on brain function. Sleep problems are prevalent in neurodevelopmental, neurodegenerative and psychiatric disorders. Thus, understanding the molecular consequences of SD is of fundamental importance in neuroscience. In this study, we present the first simultaneous bulk and single-nuclear (sn)RNA sequencing characterization of the effects of SD in the mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of thousands of transcripts. At both the global and cell-type specific level, SD has a large repressive effect on transcription, down-regulating thousands of genes and transcripts; underscoring the importance of accounting for the effects of sleep loss in transcriptome studies of brain function. As a resource we provide extensive characterizations of cell types, genes, transcripts and pathways affected by SD; as well as tutorials for data analysis.

9.
IEEE Trans Biomed Eng ; 68(6): 1941-1950, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33201805

RESUMEN

OBJECTIVE: This article aimed to develop a unique exoskeleton to provide different types of elastic resistances (i.e., resisting flexion, extension, or bidirectionally) to the leg muscles during walking. METHODS: We created a completely passive leg exoskeleton, consisting of counteracting springs, pulleys, and clutches, to provide different types of elastic resistance to the knee. We first used a benchtop setting to calibrate the springs and validate the resistive capabilities of the device. We then tested the device's ability to alter gait mechanics, muscle activation, and kinematic aftereffects when walking on a treadmill under the three resistance types. RESULTS: Benchtop testing indicated that the device provided a nearly linear torque profile and could be accurately configured to alter the angle where the spring system was undeformed (i.e., the resting position). Treadmill testing indicated the device could specifically target knee flexors, extensors, or both, and increase eccentric loading at the joint. Additionally, these resistance types elicited different kinematic aftereffects that could be used to target user-specific spatiotemporal gait deficits. CONCLUSION: These results indicate that the elastic device can provide various types of targeted resistance training during walking. SIGNIFICANCE: The proposed elastic device can provide a diverse set of resistance types that could potentially address user-specific muscle weaknesses and gait deficits through functional resistance training.


Asunto(s)
Dispositivo Exoesqueleto , Fenómenos Biomecánicos , Marcha , Humanos , Articulación de la Rodilla , Pierna , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA