Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Cancer ; 153(6): 1257-1272, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37323038

RESUMEN

Adiponectin is the major adipocytes-secreted protein involved in obesity-related breast cancer growth and progression. We proved that adiponectin promotes proliferation in ERα-positive breast cancer cells, through ERα transactivation and the recruitment of LKB1 as ERα-coactivator. Here, we showed that adiponectin-mediated ERα transactivation enhances E-cadherin expression. Thus, we investigated the molecular mechanism through which ERα/LKB1 complex may modulate the expression of E-cadherin, influencing tumor growth, progression and distant metastasis. We demonstrated that adiponectin increases E-cadherin expression in ERα-positive 2D and higher extent in 3D cultures. This occurs through a direct activation of E-cadherin gene promoter by ERα/LKB1-complex. The impact of E-cadherin on ERα-positive breast cancer cell proliferation comes from the evidence that in the presence of E-cadherin siRNA the proliferative effects of adiponectin is no longer noticeable. Since E-cadherin connects cell polarity and growth, we investigated if the adiponectin-enhanced E-cadherin expression could influence the localization of proteins cooperating in cell polarity, such as LKB1 and Cdc42. Surprisingly, immunofluorescence showed that, in adiponectin-treated MCF-7 cells, LKB1 and Cdc42 mostly colocalize in the nucleus, impairing their cytosolic cooperation in maintaining cell polarity. The orthotopic implantation of MCF-7 cells revealed an enhanced E-cadherin-mediated breast cancer growth induced by adiponectin. Moreover, tail vein injection of MCF-7 cells showed a higher metastatic burden in the lungs of mice receiving adiponectin-treated cells compared to control. From these findings it emerges that adiponectin treatment enhances E-cadherin expression, alters cell polarity and stimulates ERα-positive breast cancer cell growth in vitro and in vivo, sustaining higher distant metastatic burden.


Asunto(s)
Adiponectina , Neoplasias , Humanos , Animales , Ratones , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Línea Celular Tumoral , Células MCF-7 , Cadherinas/genética
2.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240258

RESUMEN

Obesity has a noteworthy role in breast tumor initiation and progression. Among the mechanisms proposed, the most validated is the development of chronic low-grade inflammation, supported by immune cell infiltration along with dysfunction in adipose tissue biology, characterized by an imbalance in adipocytokines secretion and alteration of their receptors within the tumor microenvironment. Many of these receptors belong to the seven-transmembrane receptor family, which are involved in physiological features, such as immune responses and metabolism, as well as in the development and progression of several malignancies, including breast cancer. These receptors are classified as canonical (G protein-coupled receptors, GPCRs) and atypical receptors, which fail to interact and activate G proteins. Among the atypical receptors, adiponectin receptors (AdipoRs) mediate the effect of adiponectin, the most abundant adipocytes-derived hormone, on breast cancer cell proliferation, whose serum levels are reduced in obesity. The adiponectin/AdipoRs axis is becoming increasingly important regarding its role in breast tumorigenesis and as a therapeutic target for breast cancer treatment. The objectives of this review are as follows: to point out the structural and functional differences between GPCRs and AdipoRs, and to focus on the effect of AdipoRs activation in the development and progression of obesity-dependent breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptores de Adiponectina , Humanos , Femenino , Receptores de Adiponectina/metabolismo , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Adiponectina/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Microambiente Tumoral
3.
Nanomaterials (Basel) ; 11(5)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922934

RESUMEN

Nanoparticles with active-targeting and stimuli-responsive behavior are a promising class of engineered materials able to recognize the site of cancer disease, targeting the drug release and limiting side effects in the healthy organs. In this work, new dual pH/redox-responsive nanoparticles with affinity for folate receptors were prepared by the combination of two amphiphilic dextran (DEX) derivatives. DEXFA conjugate was obtained by covalent coupling of the polysaccharide with folic acid (FA), whereas DEXssPEGCOOH derived from a reductive amination step of DEX was followed by condensation with polyethylene glycol 600. After self-assembling, nanoparticles with a mean size of 50 nm, able to be destabilized in acidic pH and reducing media, were obtained. Doxorubicin was loaded during the self-assembling process, and the release experiments showed the ability of the proposed system to modulate the drug release in response to different pH and redox conditions. Finally, the viability and uptake experiments on healthy (MCF-10A) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a new drug vector in cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA