Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
For Ecol Manage ; 445: 37-47, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35645457

RESUMEN

Forest ecosystems provide a wide variety of ecosystem services to society. In harsh mountain environments, the regulating services of forests are of particular importance. Managing mountain forests for regulating services is a cost- and labor intensive endeavor. Yet, also unmanaged forests regulate the environment. In the context of evidence-based decision making it is thus important to scrutinize if current management recommendations improve the supply of regulating ecosystem services over unmanaged development trajectories. A further issue complicating decision making in the context of regulating ecosystem services is their high sensitivity to climate change. Climate-mediated increases in natural disturbances, for instance, could strongly reduce the supply of regulating services from forests in the future. Given the profound environmental changes expected for the coming decades it remains unclear whether forest management will still be able to significantly control the future trajectories of mountain forest development, or whether the management effect will be superseded by a much stronger climate and disturbance effect. Here, our objectives were (i) to quantify the future regulating service supply from a 6456 ha landscape in the Stubai valley in Tyrol, Austria, and (ii) to assess the relative importance of management, climate, and natural disturbances on the future supply of regulating ecosystem services. We focused our analysis on climate regulation, water regulation, and erosion regulation, and used the landscape simulation model iLand to quantify their development under different climate scenarios and management strategies. Our results show that unmanaged forests are efficient in providing regulating ecosystem services. Both climate regulation and erosion regulation were higher in unmanaged systems compared to managed systems, while water regulation was slightly enhanced by management. Overall, direct effects of climate change had a stronger influence on the future supply of regulating services than management and natural disturbances. The ability of management to control ecosystem service supply decreased sharply with the severity of future climate change. This finding highlights that forest management could be severely stymied in the future if climate change continues to proceed at its current rate. An improved quantitative understanding of the drivers of future ecosystem service supply is needed to more effectively combine targeted management efforts and natural ecosystem dynamics towards sustaining the benefits society derives from forests in a rapidly changing world.

2.
Environ Manage ; 58(3): 446-64, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27372660

RESUMEN

Cultural landscapes in Austria are multifunctional through their simultaneous support of productive, habitat, regulatory, social, and economic functions. This study investigates, if changing climatic conditions in Austria will lead to landscape change. Based on the assumption that farmers are the crucial decision makers when it comes to the implementation of agricultural climate change policies, this study analyzes farmers' decision-making under the consideration of potential future climate change scenarios and risk, varying economic conditions, and different policy regimes through a discrete choice experiment. Results show that if a warming climate will offer new opportunities to increase income, either through expansion of cash crop cultivation or new land use options such as short-term rotation forestry, these opportunities will almost always be seized. Even if high environmental premiums were offered to maintain current cultural landscapes, only 43 % of farmers would prefer the existing grassland cultivation. Therefore, the continuity of characteristic Austrian landscape patterns seems unlikely. In conclusion, despite governmental regulations of and incentives for agriculture, climate change will have significant effects on traditional landscapes. Any opportunities for crop intensification will be embraced, which will ultimately impact ecosystem services, tourism opportunities, and biodiversity.


Asunto(s)
Agricultura/tendencias , Cambio Climático , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Agricultura Forestal/tendencias , Formulación de Políticas , Agricultura/economía , Agricultura/métodos , Austria , Biodiversidad , Ecosistema , Agricultores , Predicción , Agricultura Forestal/economía , Agricultura Forestal/métodos , Humanos
3.
Sci Rep ; 14(1): 4213, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378759

RESUMEN

Global monthly mean temperature continuously broke records in the year 2023 since June till October. This also happened widespread at September and October in Austria, but monthly temperature records on a local scale, such as in the mid latitudes like Austria, show less persistence than global or continental averages. This makes the autumn temperature extremes in Vienna (Austria) even more striking. Considering the compound occurrence of such an event at actual climate results in a return period of 324 years, which makes it extraordinary itself. Considering climate change, the compound event of two consecutive extreme high temperature records in autumn 2023 yields return periods of about 10,000 years until the second half of the twentieth century, which partly exceeds the length of the Holocene. Focusing on moderate compound extremes of the last 10 years (2014-2023), these reach return periods of 100 years up to 1960, but are now likely to happen every 15 years. Compound extremes in summer (July and August) present a higher decrease of the return period in Vienna over the last 250 years, possible leading to even more severe impacts on ecosystems and society.

4.
Int J Biometeorol ; 57(2): 207-23, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22367169

RESUMEN

In this study we examine the determination accuracy of both the mean radiant temperature (Tmrt) and the Universal Thermal Climate Index (UTCI) within the scope of numerical weather prediction (NWP), and global (GCM) and regional (RCM) climate model simulations. First, Tmrt is determined and the so-called UTCI-Fiala model is then used for the calculation of UTCI. Taking into account the uncertainties of NWP model (among others the HIgh Resolution Limited Area Model HIRLAM) output (temperature, downwelling short-wave and long-wave radiation) stated in the literature, we simulate and discuss the uncertainties of Tmrt and UTCI at three stations in different climatic regions of Europe. The results show that highest negative (positive) differences to reference cases (under assumed clear-sky conditions) of up to -21°C (9°C) for Tmrt and up to -6°C (3.5°C) for UTCI occur in summer (winter) due to cloudiness. In a second step, the uncertainties of RCM simulations are analyzed: three RCMs, namely ALADIN (Aire Limitée Adaptation dynamique Développement InterNational), RegCM (REGional Climate Model) and REMO (REgional MOdel) are nested into GCMs and used for the prediction of temperature and radiation fluxes in order to estimate Tmrt and UTCI. The inter-comparison of RCM output for the three selected locations shows that biases between 0.0 and ±17.7°C (between 0.0 and ±13.3°C) for Tmrt (UTCI), and RMSE between ±0.5 and ±17.8°C (between ±0.8 and ±13.4°C) for Tmrt (UTCI) may be expected. In general the study shows that uncertainties of UTCI, due to uncertainties arising from calculations of radiation fluxes (based on NWP models) required for the prediction of Tmrt, are well below ±2°C for clear-sky cases. However, significant higher uncertainties in UTCI of up to ±6°C are found, especially when prediction of cloudiness is wrong.


Asunto(s)
Clima , Modelos Teóricos , Europa (Continente) , Energía Solar , Incertidumbre , Tiempo (Meteorología)
5.
Sci Total Environ ; 872: 162237, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36796687

RESUMEN

Apples are the third most produced fruit in the world, but their production is often pesticide-intensive. Our objective was to identify options for pesticide reduction using farmer records from 2549 commercial apple fields in Austria during five years between 2010 and 2016. Using generalized additive mixed modeling, we examined how pesticide use was related to farm management, apple varieties, and meteorological parameters, and how it affected yields and toxicity to honeybees. Apple fields received 29.5 ± 8.6 (mean ± SD) pesticide applications per season at a rate of 56.7 ± 22.7 kg ha-1, which included a total of 228 pesticide products with 80 active ingredients. Over the years, fungicides accounted for 71 % of the pesticide amounts applied, insecticides for 15 %, and herbicides for 8 %. The most frequently used fungicides were sulfur (52 %), followed by captan (16 %) and dithianon (11 %). Of insecticides, paraffin oil (75 %) and chlorpyrifos/chlorpyrifos-methyl (6 % combined) were most frequently used. Among herbicides, glyphosate (54 %), CPA (20 %) and pendimethalin (12 %) were most often used. Pesticide use increased with increasing frequency of tillage and fertilization, increasing field size, increasing spring temperatures, and drier summer conditions. Pesticide use decreased with increasing number of summer days with maximum temperatures >30 °C and number of warm, humid days. Apple yields were significantly positively related to the number of heat days, warm humid nights, and pesticide treatment frequency, but were not affected by frequency of fertilization and tillage. Honeybee toxicity was not related to insecticide use. Pesticide use and yield were significantly related to apple varieties. Our analysis shows that pesticide use in the apple farms studied can be reduced by less fertilization and tillage, partly because yields were >50 % higher than the European average. However, weather extremes related to climate change, such as drier summers, could challenge plans to reduce pesticide use.


Asunto(s)
Agricultura , Clima , Malus , Plaguicidas
6.
Sci Data ; 10(1): 590, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679367

RESUMEN

The modelling of electricity production and demand requires highly specific and comprehensive meteorological data. One challenge is the high temporal frequency as electricity production and demand modelling typically is done with hourly data. On the other side the European electricity market is highly connected, so that a pure country-based modelling is not expedient and at least the whole European Union (EU) area has to be considered. Additionally, the spatial resolution of the data set must be able to represent the thermal conditions, which requires high spatial resolution at least in mountainous regions. All these requirements lead to huge data amounts for historic observations and even more for climate change projections for the whole 21st century. Thus, we have developed the aggregated European wide climate data set SECURES-Met that has a temporal resolution of one hour, covers the whole EU area and other selected European countries, has a reasonable size but considers the high spatial variability.

7.
Sci Total Environ ; 862: 160643, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462651

RESUMEN

To better understand the influence of land use and meteorological parameters on air pollutants, we deployed passive air samplers in 15 regions with different land use in eastern Austria. The samplers consisted of polyurethane PUF and polyester PEF filter matrices, which were analyzed for 566 substances by gas-chromatography/mass-spectrometry. In a previous article, we highlighted a widespread contamination of ambient air with pesticides that depends on the surrounding land use and meteorological parameters. Here we report that, in addition to agricultural pesticides, eight other substances were frequently detected in ambient air: Nitrapyrin, a nitrification inhibitor used to increase nitrogen use efficiency of fertilizers and banned in Austria since 1993; biocides against insects (DEET and transfluthrin) used mainly outside agriculture; piperonyl butoxide (PBO), a synergist mixed into pesticide formulations; and four industrially used polychlorinated biphenyls (PCBs), long banned worldwide. Concentrations of the detected substances were positively related to air temperature, but only slightly related to agricultural land use in the sampler's vicinity. The city center showed the highest concentrations of biocides, PCBs and PBO, but also medium concentrations of nitrapyrin. Four sites had no air contamination with these substances; including two national parks dominated by grassland or forest, but also two sites with mixed land use. The potential human toxicity of the detected substances based on globally harmonized hazard classifications was high: seven substances had specific organ toxicity, six were cancerogenic, and two were acutely toxic; however, several substances had incomplete information of hazard profiles. Moreover, all substances were acutely and chronically toxic to aquatic life. We recommend that substances of different origins be included in the air pollution monitoring portfolio to comprehensively assess the potential hazards to humans and the environment.


Asunto(s)
Contaminantes Atmosféricos , Desinfectantes , Plaguicidas , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/análisis , Contaminantes Atmosféricos/análisis , Desinfectantes/análisis , Nitrificación , Plaguicidas/análisis , Monitoreo del Ambiente/métodos
8.
Biology (Basel) ; 12(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36829592

RESUMEN

Climate warming has been observed as the main cause of changes in diversity, community composition, and spatial distribution of different plant and invertebrate species. Due to even stronger warming compared to the global mean, bumblebees in alpine ecosystems are particularly exposed to these changes. To investigate the effects of climate warming, we sampled bumblebees along an elevational gradient, compared the records with data from 1935 and 1936, and related our results to climate models. We found that bumblebee community composition differed significantly between sampling periods and that increasing temperatures in spring were the most plausible factor explaining these range shifts. In addition, species diversity estimates were significantly lower compared to historical records. The number of socio-parasitic species was significantly higher in the historical communities, while recent communities showed increases in climate generalists and forest species at lower elevations. Nevertheless, no significant changes in community-weighted means of a species temperature index (STI) or the number of cold-adapted species were detected, likely due to the historical data resolution. We conclude that the composition and functionality of bumblebee communities in the study area have been significantly affected by climate warming, with changes in land use and vegetation cover likely playing an additional important role.

9.
Sci Total Environ ; 838(Pt 2): 156012, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35597361

RESUMEN

Little is known about (i) how numbers and concentrations of airborne pesticide residues are influenced by land use, interactions with meteorological parameters, or by substance-specific chemo-physical properties, and (ii) what potential toxicological hazards this could pose to non-target organisms including humans. We installed passive air samplers (polyurethane PUF and polyester PEF filter matrices) in 15 regions with different land uses in eastern Austria for up to 8 months. Samples were analyzed for 566 substances by gas-chromatography/mass-spectrometry. We analyzed relationships between frequency and concentrations of pesticides, land use, meteorological parameters, substance properties, and season. We found totally 67 pesticide active ingredients (24 herbicides, 30 fungicides, 13 insecticides) with 10-53 pesticides per site. Herbicides metolachlor, pendimethalin, prosulfocarb, terbuthylazine, and the fungicide HCB were found in all PUF samplers, and glyphosate in all PEF samplers; chlorpyrifos-ethyl was the most abundant insecticide found in 93% of the samplers. Highest concentrations showed the herbicide prosulfocarb (725 ± 1218 ng sample-1), the fungicide folpet (412 ± 465 ng sample-1), and the insecticide chlorpyrifos-ethyl (110 ± 98 ng sample-1). Pesticide numbers and concentrations increased with increasing proportions of arable land in the surroundings. However, pesticides were also found in two National Parks (10 and 33 pesticides) or a city center (17 pesticides). Pesticide numbers and concentrations changed between seasons and correlated with land use, temperature, radiation, and wind, but were unaffected by substance volatility. Potential ecotoxicological exposure of mammals, birds, earthworms, fish, and honeybees increased with increasing pesticide numbers and concentrations. Human toxicity potential of detected pesticides was high, with averaged 54% being acutely toxic, 39% reproduction toxic, 24% cancerogenic, and 10% endocrine disrupting. This widespread pesticide air pollution indicates that current environmental risk assessments, field application techniques, protective measures, and regulations are inadequate to protect the environment and humans from potentially harmful exposure.


Asunto(s)
Cloropirifos , Fungicidas Industriales , Herbicidas , Insecticidas , Plaguicidas , Agricultura , Animales , Abejas , Biodiversidad , Monitoreo del Ambiente/métodos , Fungicidas Industriales/análisis , Herbicidas/análisis , Humanos , Insecticidas/análisis , Mamíferos , Plaguicidas/análisis , Tiempo (Meteorología)
10.
R Soc Open Sci ; 8(9): 210618, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34631120

RESUMEN

The western honey bee (Apis mellifera) is one of the most important insects kept by humans, but high colony losses are reported around the world. While the effects of general climatic conditions on colony winter mortality were already demonstrated, no study has investigated specific weather conditions linked to biophysical processes governing colony vitality. Here, we quantify the comparative relevance of four such processes that co-determine the colonies' fitness for wintering during the annual hive management cycle, using a 10-year dataset of winter colony mortality in Austria that includes 266 378 bee colonies. We formulate four process-based hypotheses for wintering success and operationalize them with weather indicators. The empirical data is used to fit simple and multiple linear regression models on different geographical scales. The results show that approximately 20% of winter mortality variability can be explained by the analysed weather conditions, and that it is most sensitive to the duration of extreme cold spells in mid and late winter. Our approach shows the potential of developing weather indicators based on biophysical processes and discusses the way forward for applying them in climate change studies.

11.
Sci Total Environ ; 657: 746-763, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677940

RESUMEN

In this paper, the hydrological impacts of future socio-economic and climatic development are assessed for a regional-scale Alpine catchment (Brixental, Tyrol, Austria). Therefore, coupled storylines of future land use and climate scenarios were developed in a transdisciplinary stakeholder process by means of questionnaire analyses and interviews with local experts from various relevant societal sectors. Resulting future land use maps for each decade were used as spatial input in the hydrological model WaSiM, to which a new module for the consideration of snow-canopy interaction processes has been added. Simulation results for three developed storylines, each combined with a moderate (A1B) and an extreme (RCP8.5) climate future, show that in a warmer and dryer climate the amount of annual simulated streamflow at the gauge of the catchment undergoes a significant reduction. The (mainly natural) reforestation of the catchment - caused by abandonment of previously cultivated areas - leads to additional losses of water by enhanced interception and evapotranspiration processes. Further cultivation of the current mountain pasture areas has a certain potential to attenuate undesirable long-term impacts of climate change on the catchment water balance.

12.
Wien Klin Wochenschr ; 120(19-20 Suppl 4): 24-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19066768

RESUMEN

In Europe, sandflies (Diptera: Psychodidae: Phlebotominae) are typical Mediterranean faunal elements of low expansivity, which are widely distributed in more than 20 species in many parts of Southern Europe. A few species have extended their distribution to the northwest invading extramediterranean regions (Western, Eastern Europe); any occurrence in Central Europe north of the Alps was excluded until recently. Since 1999 sandflies have been found in several parts in Germany and in Belgium; originally these records were ascribed to climate change and global warming. Meanwhile, the more likely assumption is that sandflies have always, probably since the Holocene climate optima (ca. 4500 and 2500 B.C.), been in Central Europe sporadically to where they have come as immigrants (or re-immigrants) from Mediterranean refugial areas. It is, however, without question that global warming will lead to an extension of the distributional areas of sandflies. A climatological analysis of the localities where sandflies have been found in Central Europe has revealed that temperature is the key factor. A comparison of climatological parameters in sandfly-localities with the climatic conditions in Austria (where sandflies have not yet been found) has shown that an increase of temperature by 1 degrees C in January (Ph. mascittii) or 1 degrees C in July (Ph. neglectus), respectively, would lead to suitable conditions for the occurrence of sandflies in certain parts of Austria. (The scenarios for an increase of temperature until the end of the century vary between 1.5 degrees C to 4.5 degrees C; 3 degrees C seem to be realistic also for critical climatologists.) Leishmaniae certainly do not occur in Central Europe primarily, but an increasing number of infections in humans, as well as in animals, acquired in Central Europe has been registered. It is highly likely that these infections are due to sandflies which have been infected by sucking blood on infected dogs. Dogs infected with Leishmania and presenting a variety of clinical symptoms are frequently brought by compassionate tourists from Mediterranean countries - often illegally - to Central Europe. Meanwhile, a flourishing market for dogs of miserable appearance suffering from leishmaniosis has been developed by profit-oriented opportunists in Mediterranean countries. With respect to the serious course of visceral leishmaniosis (particularly in infants and in immunocompromised persons) this dangerous condition merits intensive attention. Phleboviruses have not been found in Central Europe, so far. However, in the course of global warming an establishment of biological cycles after an introduction of the pathogens, particularly if vertebrates other than humans can also act as reservoir hosts, seems possible.


Asunto(s)
Efecto Invernadero , Leishmania donovani , Leishmania infantum , Leishmaniasis Visceral/transmisión , Fiebre por Flebótomos/transmisión , Psychodidae/crecimiento & desarrollo , Animales , Austria , Vectores de Enfermedades , Perros , Humanos , Temperatura
13.
Sensors (Basel) ; 7(10): 2330-2362, 2007 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28903230

RESUMEN

The results of previous studies have suggested that estimated daily globalradiation (RG) values contain an error that could compromise the precision of subsequentcrop model applications. The following study presents a detailed site and spatial analysis ofthe RG error propagation in CERES and WOFOST crop growth models in Central Europeanclimate conditions. The research was conducted i) at the eight individual sites in Austria andthe Czech Republic where measured daily RG values were available as a reference, withseven methods for RG estimation being tested, and ii) for the agricultural areas of the CzechRepublic using daily data from 52 weather stations, with five RG estimation methods. In thelatter case the RG values estimated from the hours of sunshine using the ångström-Prescottformula were used as the standard method because of the lack of measured RG data. At thesite level we found that even the use of methods based on hours of sunshine, which showedthe lowest bias in RG estimates, led to a significant distortion of the key crop model outputs.When the ångström-Prescott method was used to estimate RG, for example, deviationsgreater than ±10 per cent in winter wheat and spring barley yields were noted in 5 to 6 percent of cases. The precision of the yield estimates and other crop model outputs was lowerwhen RG estimates based on the diurnal temperature range and cloud cover were used (mean bias error 2.0 to 4.1 per cent). The methods for estimating RG from the diurnal temperature range produced a wheat yield bias of more than 25 per cent in 12 to 16 per cent of the seasons. Such uncertainty in the crop model outputs makes the reliability of any seasonal yield forecasts or climate change impact assessments questionable if they are based on this type of data. The spatial assessment of the RG data uncertainty propagation over the winter wheat yields also revealed significant differences within the study area. We found that RG estimates based on diurnal temperature range or its combination with daily total precipitation produced a bias of to 30 per cent in the mean winter wheat grain yields in some regions compared with simulations in which RG values had been estimated using the ångström-Prescott formula. In contrast to the results at the individual sites, the methods based on the diurnal temperature range in combination with daily precipitation totals showed significantly poorer performance than the methods based on the diurnal temperature range only. This was due to the marked increase in the bias in RG estimates with altitude, longitude or latitude of given region. These findings in our view should act as an incentive for further research to develop more precise and generally applicable methods for estimating daily RG based more on the underlying physical principles and/or the remote sensing approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA