Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol ; 195(7): 3374-81, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320254

RESUMEN

NK cells are functionally educated by self-MHC specific receptors, including the inhibitory killer cell Ig-like receptors (KIRs) and the lectin-like CD94/NKG2A heterodimer. Little is known about how NK cell education influences qualitative aspects of cytotoxicity such as migration behavior and efficacy of activation and killing at the single-cell level. In this study, we have compared the behavior of FACS-sorted CD56(dim)CD57(-)KIR(-)NKG2A(+) (NKG2A(+)) and CD56(dim)CD57(-)KIR(-)NKG2A(-) (lacking inhibitory receptors; IR(-)) human NK cells by quantifying migration, cytotoxicity, and contact dynamics using microchip-based live cell imaging. NKG2A(+) NK cells displayed a more dynamic migration behavior and made more contacts with target cells than IR(-) NK cells. NKG2A(+) NK cells also more frequently killed the target cells once a conjugate had been formed. NK cells with serial killing capacity were primarily found among NKG2A(+) NK cells. Conjugates involving IR(-) NK cells were generally more short-lived and IR(-) NK cells did not become activated to the same extent as NKG2A(+) NK cells when in contact with target cells, as evident by their reduced spreading response. In contrast, NKG2A(+) and IR(-) NK cells showed similar dynamics in terms of duration of conjugation periods and NK cell spreading response in conjugates that led to killing. Taken together, these observations suggest that the high killing capacity of NKG2A(+) NK cells is linked to processes regulating events in the recognition phase of NK-target cell contact rather than events after cytotoxicity has been triggered.


Asunto(s)
Movimiento Celular/inmunología , Citotoxicidad Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Antígeno CD56/metabolismo , Antígenos CD57/metabolismo , Línea Celular , Citometría de Flujo , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Procedimientos Analíticos en Microchip , Subfamília C de Receptores Similares a Lectina de Células NK/biosíntesis , Receptores KIR/metabolismo
2.
J Immunol ; 194(9): 4518-27, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25825444

RESUMEN

The functional capacity of NK cells is dynamically tuned by integrated signals from inhibitory and activating cell surface receptors in a process termed NK cell education. However, the understanding of the cellular and molecular mechanisms behind this functional tuning is limited. In this study, we show that the expression of the adhesion molecule and activation receptor DNAX accessory molecule 1 (DNAM-1) correlates with the quantity and quality of the inhibitory input by HLA class I-specific killer cell Ig-like receptors and CD94/NKG2A as well as with the magnitude of functional responses. Upon target cell recognition, the conformational state of LFA-1 changed in educated NK cells, associated with rapid colocalization of both active LFA-1 and DNAM-1 at the immune synapse. Thus, the coordinated expression of LFA-1 and DNAM-1 is a central component of NK cell education and provides a potential mechanism for controlling cytotoxicity by functionally mature NK cells.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/genética , Expresión Génica , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Antígeno-1 Asociado a Función de Linfocito/genética , Antígenos de Diferenciación de Linfocitos T/metabolismo , Biomarcadores , Humanos , Sinapsis Inmunológicas/genética , Sinapsis Inmunológicas/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Receptores de Células Asesinas Naturales/genética , Receptores de Células Asesinas Naturales/metabolismo
3.
Blood ; 121(8): 1326-34, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23287857

RESUMEN

Despite intense scrutiny of the molecular interactions between natural killer (NK) and target cells, few studies have been devoted to dissection of the basic functional heterogeneity in individual NK cell behavior. Using a microchip-based, time-lapse imaging approach allowing the entire contact history of each NK cell to be recorded, in the present study, we were able to quantify how the cytotoxic response varied between individual NK cells. Strikingly, approximately half of the NK cells did not kill any target cells at all, whereas a minority of NK cells was responsible for a majority of the target cell deaths. These dynamic cytotoxicity data allowed categorization of NK cells into 5 distinct classes. A small but particularly active subclass of NK cells killed several target cells in a consecutive fashion. These "serial killers" delivered their lytic hits faster and induced faster target cell death than other NK cells. Fast, necrotic target cell death was correlated with the amount of perforin released by the NK cells. Our data are consistent with a model in which a small fraction of NK cells drives tumor elimination and inflammation.


Asunto(s)
Movimiento Celular/inmunología , Células Asesinas Naturales/clasificación , Células Asesinas Naturales/citología , Activación de Linfocitos/inmunología , Linfocitos T Citotóxicos/clasificación , Linfocitos T Citotóxicos/citología , Apoptosis/inmunología , Comunicación Celular/inmunología , Degranulación de la Célula/inmunología , Células HEK293 , Humanos , Inmunofenotipificación , Células Asesinas Naturales/inmunología , Procedimientos Analíticos en Microchip , Modelos Biológicos , Necrosis/inmunología , Linfocitos T Citotóxicos/inmunología , Imagen de Lapso de Tiempo
4.
Sci Signal ; 14(684)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035142

RESUMEN

Immune synapses are large-scale, transient molecular assemblies that serve as platforms for antigen presentation to B and T cells and for target recognition by cytotoxic T cells and natural killer (NK) cells. The formation of an immune synapse is a tightly regulated, stepwise process in which the cytoskeleton, cell surface receptors, and intracellular signaling proteins rearrange into supramolecular activation clusters (SMACs). We generated artificial immune synapses (AIS) consisting of synthetic and natural ligands for the NK cell-activating receptors LFA-1 and CD16 by microcontact printing the ligands into circular-shaped SMAC structures. Live-cell imaging and analysis of fixed human NK cells in this reductionist system showed that the spatial distribution of activating ligands influenced the formation, stability, and outcome of NK cell synapses. Whereas engagement of LFA-1 alone promoted synapse initiation, combined engagement of LFA-1 and CD16 was required for the formation of mature synapses and degranulation. Organizing LFA-1 and CD16 ligands into donut-shaped AIS resulted in fewer long-lasting, symmetrical synapses compared to dot-shaped AIS. NK cells spreading evenly over either AIS shape exhibited similar arrangements of the lytic machinery. However, degranulation only occurred in regions containing ligands that therefore induced local signaling, suggesting the existence of a late checkpoint for degranulation. Our results demonstrate that the spatial organization of ligands in the synapse can affect its outcome, which could be exploited by target cells as an escape mechanism.


Asunto(s)
Sinapsis Inmunológicas , Células Asesinas Naturales , Antígeno-1 Asociado a Función de Linfocito , Receptores de IgG , Degranulación de la Célula , Citoesqueleto , Proteínas Ligadas a GPI , Humanos
6.
Methods Mol Biol ; 1441: 87-106, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27177659

RESUMEN

NK cell heterogeneity has primarily been studied either on the population level, measuring average responses, or on the single cell level by flow cytometry, providing static snapshots. These approaches have certain drawbacks, not enabling dynamic observations of single cells over extended periods of time. One of the primary limitations of single cell imaging has been throughput; it has been challenging to collect data for many cells due to their dynamic nature and migrating out of the field of view. Spatially confining cells combined with automated fluorescence microscopy enables the simultaneous monitoring of many NK cells in parallel for extended periods of time (>12 h). Such an approach allows us to dissect how the sum of individual NK cell responses translates to the global average response typically observed.


Asunto(s)
Células Asesinas Naturales/citología , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Movimiento Celular , Humanos , Procedimientos Analíticos en Microchip , Microscopía Fluorescente
7.
Front Immunol ; 7: 119, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092139

RESUMEN

Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

8.
Front Immunol ; 5: 80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24639676

RESUMEN

Natural killer (NK) cells serve as one of the first lines of defense against viral infections and transformed cells. NK cell cytotoxicity is not dependent on antigen presentation by target cells, but is dependent on integration of activating and inhibitory signals triggered by receptor-ligand interactions formed at a tight intercellular contact between the NK and target cell, i.e., the immune synapse. We have studied the single-cell migration behavior and target-cell contact dynamics of resting and interleukin (IL)-2-activated human peripheral blood NK cells. Small populations of NK cells and target cells were confined in microwells and imaged by fluorescence microscopy for >8 h. Only the IL-2-activated population of NK cells showed efficient cytotoxicity against the human embryonic kidney 293T target cells. We found that although the average migration speeds were comparable, activated NK cells showed significantly more dynamic migration behavior, with more frequent transitions between periods of low and high motility. Resting NK cells formed fewer and weaker contacts with target cells, which manifested as shorter conjugation times and in many cases a complete lack of post-conjugation attachment to target cells. Activated NK cells were approximately twice as big as the resting cells, displayed a more migratory phenotype, and were more likely to employ "motile scanning" of the target-cell surface during conjugation. Taken together, our experiments quantify, at the single-cell level, how activation by IL-2 leads to altered NK cell cytotoxicity, migration behavior, and contact dynamics.

9.
Front Immunol ; 3: 300, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060879

RESUMEN

Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended periods of time. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g., conjugation, immune synapse formation, and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at the population level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA