RESUMEN
The effect of pesticide residues on non-target microorganisms in multi-contaminated soils remains poorly understood. In this study, we examined the dissipation of commonly used pesticides in a multi-contaminated vineyard soil and its effect on bacterial, fungal, and protistan communities. We conducted laboratory soil microcosm experiments under varying temperature (20°C and 30°C) and water content (20â¯% and 40â¯%) conditions. Pesticide dissipation half-lives ranged from 27 to over 300 days, depending on the physicochemical properties of the pesticides and the soil conditions. In both autoclaved and non-autoclaved soil experiments, over 50â¯% of hydrophobic pesticides (dimethomorph > isoxaben > simazine = atrazine = carbendazim) dissipated within 200 days at 20°C and 30°C. However, the contribution of biodegradation to the overall dissipation of soluble pesticides (rac-metalaxyl > isoproturon = pyrimethanil > S-metolachlor) increased to over 75â¯% at 30°C and 40â¯% water content. This suggests that soluble pesticides became more bioavailable, with degradation activity increasing with higher temperature and soil water content. In contrast, the primary process contributing to the dissipation of hydrophobic pesticides was sequestration to soil. High-throughput amplicon sequencing analysis indicated that water content, temperature, and pesticides had domain-specific effects on the diversity and taxonomic composition of bacterial, fungal, and protistan communities. Soil physicochemical properties had a more significant effect than pesticides on the various microbial domains in the vineyard soil. However, pesticide exposure emerged as a secondary factor explaining the variations in microbial communities, with a more substantial effect on protists compared to bacterial and fungal communities. Overall, our results highlight the variability in the dissipation kinetics and processes of pesticides in a multi-contaminated vineyard soil, as well as their effects on bacterial, fungal, and protistan communities.
Asunto(s)
Biodegradación Ambiental , Hongos , Plaguicidas , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Hongos/efectos de los fármacos , Bacterias/efectos de los fármacos , Granjas , Suelo/química , Temperatura , Pirimidinas , Residuos de Plaguicidas/análisis , Monitoreo del Ambiente , Eucariontes/efectos de los fármacos , Compuestos de FenilureaRESUMEN
Cities are socioecological systems that filter and select species, therefore establishing unique species assemblages and biotic interactions. Urban ecosystems can host richer wild bee communities than highly intensified agricultural areas, specifically in resource-rich urban green spaces such as allotments and family gardens. At the same time, urban beekeeping has boomed in many European cities, raising concerns that the fast addition of a large number of managed bees could deplete the existing floral resources, triggering competition between wild bees and honeybees. Here, we studied the interplay between resource availability and the number of honeybees at local and landscape scales and how this relationship influences wild bee diversity. We collected wild bees and honeybees in a pollination experiment using four standardized plant species with distinct floral morphologies. We performed the experiment in 23 urban gardens in the city of Zurich (Switzerland), distributed along gradients of urban and local management intensity, and measured functional traits related to resource use. At each site, we quantified the feeding niche partitioning (calculated as the average distance in the multidimensional trait space) between the wild bee community and the honeybee population. Using multilevel structural equation models (SEM), we tested direct and indirect effects of resource availability, urban beekeeping, and wild bees on the community feeding niche partitioning. We found an increase in feeding niche partitioning with increasing wild bee species richness. Moreover, feeding niche partitioning tended to increase in experimental sites with lower resource availability at the landscape scale, which had lower abundances of honeybees. However, beekeeping intensity at the local and landscape scales did not directly influence community feeding niche partitioning or wild bee species richness. In addition, wild bee species richness was positively influenced by local resource availability, whereas local honeybee abundance was positively affected by landscape resource availability. Overall, these results suggest that direct competition for resources was not a main driver of the wild bee community. Due to the key role of resource availability in maintaining a diverse bee community, our study encourages cities to monitor floral resources to better manage urban beekeeping and help support urban pollinators.
Asunto(s)
Agricultura , Ecosistema , Animales , Abejas , Ciudades , Jardines , PolinizaciónRESUMEN
Ancestral adaptations to tropical-like climates drive most multicellular biogeography and macroecology. Observational studies suggest that this niche conservatism could also be shaping unicellular biogeography and macroecology, although evidence is limited to Acidobacteria and testate amoebae. We tracked the phylogenetic signal of this niche conservatism in far related and functionally contrasted groups of common soil protists (Bacillariophyta, Cercomonadida, Ciliophora, Euglyphida and Kinetoplastida) along a humid but increasingly cold elevational gradient in Switzerland. Protist diversity decreased, and the size of the geographic ranges of taxa increased with elevation and associated decreasing temperature (climate), which is consistent with a macroecological pattern known as the Rapoport effect. Bacillariophyta exhibited phylogenetically overdispersed communities assembled by competitive exclusion of closely related taxa with shared (conserved) niches. By contrast, Cercomonadida, Ciliophora, Euglyphida and Kinetoplastida exhibited phylogenetically clustered communities assembled by habitat filtering, revealing the coexistence of closely related taxa with shared (conserved) adaptations to cope with the humid but temperate to cold climate of the study site. Phylobetadiversity revealed that soil protists exhibit a strong phylogenetic turnover among elevational sites, suggesting that most taxa have evolutionary constraints that prevent them from colonizing the colder and higher sites of the elevation gradient. Our results suggest that evolutionary constraints determine how soil protists colonize climates departing from warm and humid conditions. We posit that these evolutionary constraints are linked to an ancestral adaptation to tropical-like climates, which limits their survival in exceedingly cold sites. This niche conservatism possibly drives their biogeography and macroecology along latitudinal and altitudinal climatic gradients.
Asunto(s)
Cilióforos , Suelo , Biodiversidad , Cilióforos/genética , Ecosistema , FilogeniaRESUMEN
Climatic conditions vary in spatial frequency globally. Spatially rare climatic conditions provide fewer suitable environments than common ones and should impose constraints on the types of species present locally and regionally. We used data on 467 North American angiosperms to test the effects of the spatial frequency of climatic conditions on ecological niche specialisation and functional diversity. We predicted that rare climates should favour generalist species that are able to inhabit a broader range of climatic conditions. Our results show that climate frequency filters species that differ in niche breadths and rare environments host species combinations with greater functional diversity. The proposed analytical approaches and hypotheses can be adapted to investigate different aspects of ecological assemblies and their biodiversity. We discuss different mechanisms regarding how spatial frequency of environments can affect niche composition and functional diversity. These should be useful while developing theoretical frameworks for generating a deeper understanding of its underpinnings.
Asunto(s)
Magnoliopsida , Biodiversidad , Clima , Ecología , EcosistemaRESUMEN
Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.
Asunto(s)
Amoeba/genética , Variación Genética/genética , Filogenia , Animales , Mariposas Diurnas/genética , Ecosistema , Eucariontes/genética , Especiación Genética , América del Norte , Plantas/genética , Sphagnopsida/crecimiento & desarrolloRESUMEN
Decomposing cadavers modify the soil environment, but the effect on soil organisms and especially on soil protists is still poorly documented. We conducted a 35-month experiment in a deciduous forest where soil samples were taken under pig cadavers, control plots and fake pigs (bags of similar volume as the pigs). We extracted total soil DNA, amplified the SSU ribosomal RNA (rRNA) gene V9 region and sequenced it by Illumina technology and analysed the data for euglyphid testate amoebae (Rhizaria: Euglyphida), a common group of protozoa known to respond to micro-environmental changes. We found 51 euglyphid operational taxonomic units (OTUs), 45 of which did not match any known sequence. Most OTUs decreased in abundance underneath cadavers between days 0 and 309, but some responded positively after a time lag. We sequenced the full-length SSU rRNA gene of two common OTUs that responded positively to cadavers; a phylogenetic analysis showed that they did not belong to any known euglyphid family. This study confirmed the existence of an unknown diversity of euglyphids and that they react to cadavers. Results suggest that metabarcoding of soil euglyphids could be used as a forensic tool to estimate the post-mortem interval (PMI) particularly for long-term (>2 months) PMI, for which no reliable tool exists.
Asunto(s)
Cercozoos/genética , Bosques , Cambios Post Mortem , Suelo/parasitología , Animales , Cercozoos/clasificación , Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Animales , Filogenia , ARN Ribosómico , PorcinosRESUMEN
Newly developed methods for time-resolved studies using the polychromatic and in particular the pink-Laue technique, suitable for medium and small-size unit cells typical in chemical crystallography, are reviewed. The order of the sections follows that of a typical study, starting with a description of the pink-Laue technique, followed by the strategy of data collection for analysis with the RATIO method. Novel procedures are described for spot integration, orientation matrix determination for relatively sparse diffraction patterns, scaling of multi-crystal data sets, use of Fourier maps for initial assessment and analysis of results, and least-squares refinement of photo-induced structural and thermal changes. In the calculation of Fourier maps a ground-state structure model, typically based on monochromatic results, is employed as reference, and the laser-ON structure factors for the Fourier summations are obtained by multiplying the reference ground-state structure factors by the square root of the experimental ON/OFF ratios. A schematic of the procedure followed is included in the conclusion section.
Asunto(s)
Cristalografía por Rayos X/métodos , Sustancias Macromoleculares/efectos de la radiación , Modelos Estructurales , Sincrotrones , Animales , Recolección de Datos , Difracción de Rayos X/métodosRESUMEN
Peatland testate amoebae (TA) are well-established bioindicators for depth to water table (DWT), but effects of hydrological changes on TA communities have never been tested experimentally. We tested this in a field experiment by placing Sphagnum carpets (15 cm diameter) collected in hummock, lawn and pool microsites (origin) at three local conditions (dry, moist and wet) using trenches dug in a peatland. One series of samples was seeded with microorganism extract from all microsites. TA community were analysed at T0: 8-2008, T1: 5-2009 and T2: 8-2009. We analysed the data using conditional inference trees, principal response curves (PRC) and DWT inferred from TA communities using a transfer function used for paleoecological reconstruction. Density declined from T0 to T1 and then increased sharply by T2. Species richness, Simpson diversity and Simpson evenness were lower at T2 than at T0 and T1. Seeded communities had higher species richness in pool samples at T0. Pool samples tended to have higher density, lower species richness, Simpson diversity and Simpson Evenness than hummock and/or lawn samples until T1. In the PRC, the effect of origin was significant at T0 and T1, but the effect faded away by T2. Seeding effect was strongest at T1 and lowest vanished by T2. Local condition effect was strong but not in line with the wetness gradient at T1 but started to reflect it by T2. Likewise, TA-inferred DWT started to match the experimental conditions by T2, but more so in hummock and lawn samples than in pool samples. This study confirmed that TA responds to hydrological changes over a 1-year period. However, sensitivity of TA to hydrological fluctuations, and thus the accuracy of inferred DWT changes, was habitat specific, pool TA communities being least responsive to environmental changes. Lawns and hummocks may be thus better suited than pools for paleoecological reconstructions. This, however, contrasts with the higher prediction error and species' tolerance for DWT with increasing dryness observed in transfer function models.
Asunto(s)
Amebozoos/fisiología , Biodiversidad , Rhizaria/fisiología , Humedales , Francia , Hidrología , SphagnopsidaRESUMEN
The triplet excited state of a new crystalline form of a tetranuclear coordination d(10)-d(10)-type complex, Ag2Cu2L4 (L = 2-diphenylphosphino-3-methylindole ligand), containing Ag(I) and Cu(I) metal centers has been explored using the Laue pump-probe technique with ≈80 ps time resolution. The relatively short lifetime of 1 µs is accompanied by significant photoinduced structural changes, as large as the Ag1···Cu2 distance shortening by 0.59(3) Å. The results show a pronounced strengthening of the argentophilic interactions and formation of new Ag···Cu bonds on excitation. Theoretical calculations indicate that the structural changes are due to a ligand-to-metal charge transfer (LMCT) strengthening the Ag···Ag interaction, mainly occurring from the methylindole ligands to the silver metal centers. QM/MM optimizations of the ground and excited states of the complex support the experimental results. Comparison with isolated molecule optimizations demonstrates the restricting effect of the crystalline matrix on photoinduced distortions. The work represents the first time-resolved Laue diffraction study of a heteronuclear coordination complex and provides new information on the nature of photoresponse of coinage metal complexes, which have been the subject of extensive studies.
Asunto(s)
Cobre/química , Luz , Sustancias Luminiscentes/química , Compuestos Organometálicos/química , Plata/química , Procesos Fotoquímicos , Teoría Cuántica , Factores de TiempoRESUMEN
We report the first instance of observing the phototriggered isomerization of dmso ligands on a bis sulfoxide complex, [Ru(bpy)2(dmso)2], in the crystalline solid state. The solid-state UV-vis spectrum of the crystal demonstrates an increase in optical density around 550 nm after irradiation, which is consistent with the solution isomerization results. Digital images of the crystal before and after irradiation display a notable color change (pale orange to red) and cleavage occurs along planes, (1Ì01) and (100), during irradiation. Single crystal X-ray diffraction data also confirms that isomerization is occurring throughout the lattice and a structure that contains a mix of the S,S and O,O/S,O isomer was attained from a crystal irradiated ex situ. In situ irradiation XRD studies reveal that the percentage of the O-bonded isomer increases as a function of 405 nm exposure time.
RESUMEN
A novel symmetric tetra-imidazolium-bis-heterocycle, called C7, was designed and synthesized in a quick two-step pathway, with the objective to synthesize biologically active supramolecular assembly. The synthesized compound was then analyzed for its photophysical properties, for a potential application in theragnostic (fluorescence) or phototherapy (photodynamic therapy, with the production of reactive oxygen species, such as singlet oxygen 1O2). C7 was thus screened for its biological activity, in particular against important human pathogens of viral origin (respiratory viruses such as adenovirus type 2 and human coronavirus 229E) and of fungal and bacterial origin. The compound showed limited antiviral activity, combined with very good antiproliferative activity against breast cancer, and head and neck squamous cell carcinoma models. Interestingly, the selected compound showed excellent antibacterial activity against a large array of Gram-positive and Gram-negative clinically isolated pathogenic bacteria, with a possible inhibitory mechanism on the bacterial cell wall synthesis studied with electron microscopy and molecular docking tools. Collectively, the newly synthesized compound C7 could be considered as a potential lead for the development of new antibacterial treatment, endowed with basic photophysical properties, opening the door towards the future development of phototherapy approaches.
RESUMEN
Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.
Asunto(s)
Quirópteros , Urbanización , Animales , Abejas , Síndrome , Ecosistema , Biodiversidad , AvesRESUMEN
A new analysis method for the short excited-state lifetime measurement of photosensitive species in crystals is described. Based on photocrystallographic techniques, this method is an alternative to spectroscopic methods and is also valid for non-luminescent excited species. Two different approaches are described depending on the magnitude of the lifetime τ. For very short lifetimes below the width of the synchrotron pulse, an estimated τ can be obtained from the occurrence of the maximal system response as a function of the pump-probe delay time Δt. More precise estimates for both short and longer lifetimes can be achieved by a refinement of a model of the response as a function of the pump-probe delay time. The method also offers the possibility of the structure determination of excited species with lifetimes in the 40-100â ps range.
RESUMEN
A spot-integration method is described which does not require prior indexing of the reflections. It is based on statistical analysis of the values from each of the pixels on successive frames, followed for each frame by morphological analysis to identify clusters of high value pixels which form an appropriate mask corresponding to a reflection peak. The method does not require prior assumptions such as fitting of a profile or definition of an integration box. The results are compared with those of the seed-skewness method which is based on minimizing the skewness of the intensity distribution within a peak's integration box. Applications in Laue photocrystallography are presented.
RESUMEN
The excited-state structure of [Cu(I)[(1,10-phenanthroline-N,N') bis(triphenylphosphine)] cations in their crystalline [BF(4)] salt has been determined at both 180 and 90 K by single-pulse time-resolved synchrotron experiments with the modified polychromatic Laue method. The two independent molecules in the crystal show distortions on MLCT excitation that differ in magnitude and direction, a difference attributed to a pronounced difference in the molecular environment of the two complexes. As the excited states differ, the decay of the emission is biexponential with two strongly different lifetimes, the longer lifetime, assigned to the more restricted molecule, becoming more prevalent as the temperature increases. Standard deviations in the current Laue study are very much lower than those achieved in a previous monochromatic study of a Cu(I) 2,9-dimethylphenanthroline substituted complex ( J. Am. Chem. Soc. 2009 , 131 , 6566 ), but the magnitudes of the shifts on excitation are similar, indicating that lattice restrictions dominate over the steric effect of the methyl substitution. Above all, the study illustrates emphatically that molecules in solids have physical properties different from those of isolated molecules and that their properties depend on the specific molecular environment. This conclusion is relevant for the understanding of the properties of molecular solid-state devices, which are increasingly used in current technology.
Asunto(s)
Cobre/química , Compuestos Organometálicos/química , Fenantrolinas/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Fotoquímica , Teoría Cuántica , Temperatura , Factores de TiempoRESUMEN
Environmental and geographical factors are known to influence the number, distribution, and combination of species that coexist within ecological communities. This, in turn, should influence ecosystem functions such as biomass conservation, or the ability of a community to sustain biomass from small to large organisms. We tested this hypothesis by assessing the role of environmental factors in determining how biomass is conserved in over 600 limnetic fish communities spread across a broad geographic gradient in Canada. Comprehensive and accurate information on water conditions and community characteristics such as taxonomy, abundance, biomass, and size distributions were used in our assessment. Results showed that species combinations emerge as one of the main predictors of biomass conservation among the effects of individual species and abiotic factors. Our study highlights the strong role that geographic patterns in the distribution of species can play in shaping key ecosystem functions, with consequences for ecosystem services such as the provision of harvestable fish biomass.
Asunto(s)
Ecosistema , Lagos , Animales , Biomasa , Biota , PecesRESUMEN
The use of synthetic pesticides in agriculture is increasingly debated. However, few studies have compared the impact of synthetic pesticides and alternative biopesticides on non-target soil microorganisms playing a central role in soil functioning. We conducted a mesocosm experiment and used high-throughput amplicon sequencing to test the impact of a fungal biopesticide and a synthetic fungicide on the diversity, the taxonomic and functional compositions, and co-occurrence patterns of soil bacterial, fungal and protist communities. Neither the synthetic pesticide nor the biopesticide had a significant effect on microbial α-diversity. However, both types of pesticides decreased the complexity of the soil microbial network. The two pesticides had contrasting impacts on the composition of microbial communities and the identity of key taxa as revealed by microbial network analyses. The biopesticide impacted keystone taxa that structured the soil microbial network. The synthetic pesticide modified biotic interactions favouring taxa that are less efficient at degrading organic compounds. This suggests that the biopesticides and the synthetic pesticide have different impact on soil functioning. Altogether, our study shows that pest management products may have functionally significant impacts on the soil microbiome even if microbial α-diversity is unaffected. It also illustrates the potential of high-throughput sequencing analyses to improve the ecotoxicological risk assessment of pesticides on non-target soil microorganisms.
Asunto(s)
Fungicidas Industriales , Suelo , Biodiversidad , Agentes de Control Biológico , Carbamatos , Compuestos Organofosforados , Microbiología del SueloRESUMEN
The charge density and the topological features of fidarestat, an inhibitor of human aldose reductase, have been determined from ultra high-resolution X-ray diffraction data at 100 K. The modeled electron density was used to calculate the electrostatic interaction energy of fidarestat and its (2R,4S) stereoisomer with the human aldose reductase by using the ELMAM database as coded in the MoPro program. Such calculation may be extended to other protein complexes for which accurate high resolution X-ray data are available. The paper also discusses the hydrogen bonds in the fidarestat crystal. There are notably two hydrogen bonds with a pi system as an acceptor. All the chemical bonds and the intermolecular interactions, especially these two pi...H bonds, have been quantitatively studied by topological analysis. The three-dimensional electrostatic potential calculated on the molecular surface emphasizes the preferential polar binding sites of fidarestat. Theses interacting features in the molecule are crucial for drug-receptor recognition. The interactions between chemical groups in the crystal are also analyzed by computing the electrostatic energy using the latest advancements of the MoPro crystallographic software. The complexes of fidarestat and its (2R,4S) stereoisomer with human aldose reductase were modeled with a multipolar atom model transferred from our experimental electron density database. Accurate estimation of electrostatic interaction energy between inhibitors and the main residues of the protein active site is derived from this high detail level of the electron density.
Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Imidazolidinas/química , Dominio Catalítico , Inhibidores Enzimáticos/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Electricidad Estática , Difracción de Rayos XRESUMEN
PfluDING is a bacterial protein isolated from Pseudomonas fluorescens that belongs to the DING protein family, which is ubiquitous in eukaryotes and extends to prokaryotes. DING proteins and PfluDING have very similar topologies to phosphate Solute Binding Proteins (SBPs). The three-dimensional structure of PfluDING was obtained at subangstrom resolution (0.88 and 0.98 A) at two different pH's (4.5 and 8.5), allowing us to discuss the hydrogen bond network that sequesters the phosphate ion in the binding site. From this high resolution data, we experimentally elucidated the molecular basis of phosphate binding in phosphate SBPs. The phosphate ion is tightly bound to the protein via 12 hydrogen bonds between phosphate oxygen atoms and OH and NH groups of the protein. The proton on one oxygen atom of the phosphate dianion forms a 2.5 A low barrier hydrogen bond with an aspartate, with the energy released by forming this strong bond ensuring the specificity for the dianion even at pH 4.5. In particular, contrary to previous theories on phosphate SBPs, accurate electrostatic potential calculations show that the binding cleft is positively charged. PfluDING structures reveal that only dibasic phosphate binds to the protein at both acidic and basic phosphate, suggesting that the protein binding site environment stabilizes the HPO(4)(2-) form of phosphate.
Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión a Fosfato/química , Fosfatos/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Proteínas de Unión a Fosfato/metabolismo , Fosfatos/metabolismo , Unión Proteica , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Electricidad EstáticaRESUMEN
Organophosphates (OPs) constitute the largest class of insecticides used worldwide and certain of them are potent nerve agents. Consequently, enzymes degrading OPs are of paramount interest, as they could be used as bioscavengers and biodecontaminants. Looking for a stable OPs catalyst, able to support industrial process constraints, a hyperthermophilic phosphotriesterase (PTE) (SsoPox) was isolated from the archaeon Sulfolobus solfataricus and was found to be highly thermostable. The solved 3D structure revealed that SsoPox is a noncovalent dimer, with lactonase activity against "quorum sensing signals", and therefore could represent also a potential weapon against certain pathogens. The structural basis of the high thermostability of SsoPox has been investigated by performing a careful comparison between its structure and that of two mesophilic PTEs from Pseudomonas diminuta and Agrobacterium radiobacter. In addition, the conformational stability of SsoPox against the denaturing action of temperature and GuHCl has been determined by means of circular dichroism and fluorescence measurements. The data suggest that the two fundamental differences between SsoPox and the mesophilic counterparts are: (a) a larger number of surface salt bridges, also involved in complex networks; (b) a tighter quaternary structure due to an optimization of the interactions at the interface between the two monomers.