Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 601(4): 859-878, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566502

RESUMEN

Within the transient receptor potential (TRP) superfamily of ion channels, TRPV5 is a highly Ca2+ -selective channel important for active reabsorption of Ca2+ in the kidney. Its channel activity is controlled by a negative feedback mechanism involving calmodulin (CaM) binding. Combining advanced microscopy techniques and biochemical assays, this study characterized the dynamic lobe-specific CaM regulation. We demonstrate for the first time that functional (full-length) TRPV5 interacts with CaM in the absence of Ca2+ , and this interaction is intensified at increasing Ca2+ concentrations sensed by the CaM C-lobe that achieves channel pore blocking. Channel inactivation occurs without requiring CaM N-lobe calcification. Moreover, we show a Ca2+ -dependent binding stoichiometry at the single channel level. In conclusion, our study proposes a new model for CaM-dependent regulation - calmodulation - of this uniquely Ca2+ -selective TRP channel TRPV5 that involves apoCaM interaction and lobe-specific actions, which may be of significant physiological relevance given its role as gatekeeper of Ca2+ transport in the kidney. KEY POINTS: The renal Ca2+ channel TRPV5 is an important player in maintenance of the body's Ca2+ homeostasis. Activity of TRPV5 is controlled by a negative feedback loop that involves calmodulin (CaM), a protein with two Ca2+ -binding lobes. We investigated the dynamics of the interaction between TRPV5 and CaM with advanced fluorescence microscopy techniques. Our data support a new model for CaM-dependent regulation of TRPV5 channel activity with CaM lobe-specific actions and demonstrates Ca2+ -dependent binding stoichiometries. This study improves our understanding of the mechanism underlying fast channel inactivation, which is physiologically relevant given the gatekeeper function of TRPV5 in Ca2+ reabsorption in the kidney.


Asunto(s)
Calmodulina , Canales Catiónicos TRPV , Calcio/metabolismo , Canales de Calcio/metabolismo , Calmodulina/metabolismo , Unión Proteica , Canales Catiónicos TRPV/metabolismo
2.
Biochim Biophys Acta ; 1852(3): 529-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25536029

RESUMEN

Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined how primary human skin fibroblasts adapt to chronic CI inhibition. CI inhibition triggered transient and sustained changes in metabolism, redox homeostasis and mitochondrial (ultra)structure but no cell senescence/death. CI-inhibited cells consumed no oxygen and displayed minor mitochondrial depolarization, reverse-mode action of complex V, a slower proliferation rate and futile mitochondrial biogenesis. Adaptation was neither prevented by antioxidants nor associated with increased PGC1-α/SIRT1/mTOR levels. Survival of CI-inhibited cells was strictly glucose-dependent and accompanied by increased AMPK-α phosphorylation, which occurred without changes in ATP or cytosolic calcium levels. Conversely, cells devoid of AMPK-α died upon CI inhibition. Chronic CI inhibition did not increase mitochondrial superoxide levels or cellular lipid peroxidation and was paralleled by a specific increase in SOD2/GR, whereas SOD1/CAT/Gpx1/Gpx2/Gpx5 levels remained unchanged. Upon hormone stimulation, fully adapted cells displayed aberrant cytosolic and ER calcium handling due to hampered ATP fueling of ER calcium pumps. It is concluded that CI dysfunction triggers an adaptive program that depends on extracellular glucose and AMPK-α. This response avoids cell death by suppressing energy crisis, oxidative stress induction and substantial mitochondrial depolarization.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fibroblastos/enzimología , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Estrés Oxidativo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Animales , Calcio/metabolismo , Línea Celular Transformada , Supervivencia Celular/genética , Cloruros/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Fibroblastos/citología , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Cell Mol Life Sci ; 70(12): 2175-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23307072

RESUMEN

Oncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD(+) and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD(+)-salvage, accompanies the changes in NAD(H) during tumorigenesis. Here, we show by genetic and pharmacological inhibition of NAMPT in glioma cells that fluctuation in intracellular [NAD(H)] differentially affects cell growth and morphodynamics, with motility/invasion capacity showing the highest sensitivity to [NAD(H)] decrease. Extracellular supplementation of NAD(+) or re-expression of NAMPT abolished the effects. The effects of NAD(H) decrease on cell motility appeared parallel coupled with diminished pyruvate-lactate conversion by lactate dehydrogenase (LDH) and with changes in intracellular and extracellular pH. The addition of lactic acid rescued and knockdown of LDH-A replicated the effects of [NAD(H)] on motility. Combined, our observations demonstrate that [NAD(H)] is an important metabolic component of cancer cell motility. Nutrient or drug-mediated modulation of NAD(H) levels may therefore represent a new option for blocking the invasive behavior of tumors.


Asunto(s)
Movimiento Celular/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Glioma/fisiopatología , NAD/metabolismo , Invasividad Neoplásica/fisiopatología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Northern Blotting , Western Blotting , Glioma/metabolismo , Humanos , Concentración de Iones de Hidrógeno , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/farmacología , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Imagen de Lapso de Tiempo , Células Tumorales Cultivadas
4.
Biochim Biophys Acta ; 1807(12): 1624-33, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21978538

RESUMEN

Complex I (CI) of the oxidative phosphorylation system is assembled from 45 subunits encoded by both the mitochondrial and nuclear DNA. Defective mitochondrial translation is a major cause of mitochondrial disorders and proper understanding of its mechanisms and consequences is fundamental to rational treatment design. Here, we used a live cell approach to assess its consequences on CI assembly. The approach consisted of fluorescence recovery after photobleaching (FRAP) imaging of the effect of mitochondrial translation inhibition by chloramphenicol (CAP) on the dynamics of AcGFP1-tagged CI subunits NDUFV1, NDUFS3, NDUFA2 and NDUFB6 and assembly factor NDUFAF4. CAP increased the mobile fraction of the subunits, but not NDUFAF4, and decreased the amount of CI, demonstrating that CI is relatively immobile and does not associate with NDUFAF4. CAP increased the recovery kinetics of NDUFV1-AcGFP1 to the same value as obtained with AcGFP1 alone, indicative of the removal of unbound NDUFV1 from the mitochondrial matrix. Conversely, CAP decreased the mobility of NDUFS3-AcGFP1 and, to a lesser extent, NDUFB6-AcGFP1, suggestive of their enrichment in less mobile subassemblies. Little, if any, change in mobility of NDUFA2-AcGFP1 could be detected, suggesting that the dynamics of this accessory subunit of the matrix arm remains unaltered. Finally, CAP increased the mobility of NDUFAF4-AcGFP1, indicative of interaction with a more mobile membrane-bound subassembly. Our results show that the protein interactions of CI subunits and assembly factors are differently altered when mitochondrial translation is defective.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/fisiología , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , Línea Celular , Complejo I de Transporte de Electrón/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Mitocondrias/genética , Subunidades de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
5.
Biochim Biophys Acta ; 1813(5): 867-77, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21295081

RESUMEN

DMPK, the product of the mutated gene in myotonic dystrophy type 1, belongs to the subfamily of Rho-associated serine-threonine protein kinases, whose members play a role in actin-based cell morphodynamics. Not much is known about the physiological role of differentially localized individual DMPK splice isoforms. We report here that prominent stellar-shaped stress fibers are formed during early and late steps of differentiation in DMPK-deficient myoblast-myotubes upon complementation with the short cytosolic DMPK E isoform. Expression of DMPK E led to an increased phosphorylation status of MLC2. We found no such effects with vectors that encode a mutant DMPK E which was rendered enzymatically inactive or any of the long C-terminally anchored DMPK isoforms. Presence of stellar structures appears associated with changes in cell shape and motility and a delay in myogenesis. Our data strongly suggest that cytosolic DMPK participates in remodeling of the actomyosin cytoskeleton in developing skeletal muscle cells. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Asunto(s)
Actomiosina/metabolismo , Diferenciación Celular , Citosol/enzimología , Mioblastos/citología , Mioblastos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Movimiento Celular , Polaridad Celular , Proliferación Celular , Forma de la Célula , Isoenzimas/metabolismo , Ratones , Desarrollo de Músculos , Miosina Tipo II/metabolismo , Proteína Quinasa de Distrofia Miotónica , Fosforilación , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Fibras de Estrés/metabolismo , Fibras de Estrés/ultraestructura , Fracciones Subcelulares/metabolismo
6.
FEBS Lett ; 596(19): 2486-2496, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35674424

RESUMEN

Correlative light and electron microscopy (CLEM) is a powerful imaging approach that allows the direct correlation of information obtained on a light and an electron microscope. There is a growing interest in the application of CLEM in biology, mainly attributable to technical advances in field of fluorescence microscopy in the past two decades. In this review, we summarize the important developments in CLEM for biological applications, focusing on the combination of fluorescence microscopy and electron microscopy. We first provide a brief overview of the early days of fluorescence CLEM usage starting with the initial rise in the late 1970s and the subsequent optimization of CLEM workflows during the following two decades. Next, we describe how the engineering of fluorescent proteins and the development of super-resolution fluorescence microscopy have significantly renewed the interest in CLEM resulting in the present application of fluorescence CLEM in many different areas of cellular and molecular biology. Lastly, we present the promises and challenges for the future of fluorescence CLEM discussing novel workflows, probe development and quantification possibilities.


Asunto(s)
Biología , Electrones , Microscopía Electrónica , Microscopía Fluorescente/métodos
7.
J Cell Biol ; 173(5): 767-80, 2006 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-16754960

RESUMEN

Dynamic turnover of integrin cell adhesion molecules to and from the cell surface is central to cell migration. We report for the first time an association between integrins and Rab proteins, which are small GTPases involved in the traffic of endocytotic vesicles. Rab21 (and Rab5) associate with the cytoplasmic domains of alpha-integrin chains, and their expression influences the endo/exocytic traffic of integrins. This function of Rab21 is dependent on its GTP/GDP cycle and proper membrane targeting. Knock down of Rab21 impairs integrin-mediated cell adhesion and motility, whereas its overexpression stimulates cell migration and cancer cell adhesion to collagen and human bone. Finally, overexpression of Rab21 fails to induce cell adhesion via an integrin point mutant deficient in Rab21 association. These data provide mechanistic insight into how integrins are targeted to intracellular compartments and how their traffic regulates cell adhesion.


Asunto(s)
Endosomas/metabolismo , Integrina beta1/metabolismo , Proteínas de Unión al GTP rab/farmacología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Endosomas/efectos de los fármacos , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Integrina beta1/efectos de los fármacos , Mutación , Transporte de Proteínas/fisiología , Factores de Tiempo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
8.
PLoS Biol ; 6(3): e51, 2008 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-18336068

RESUMEN

Phagocytosis requires locally coordinated cytoskeletal rearrangements driven by actin polymerization and myosin motor activity. How this actomyosin dynamics is dependent upon systems that provide access to ATP at phagosome microdomains has not been determined. We analyzed the role of brain-type creatine kinase (CK-B), an enzyme involved in high-energy phosphoryl transfer. We demonstrate that endogenous CK-B in macrophages is mobilized from the cytosolic pool and coaccumulates with F-actin at nascent phagosomes. Live cell imaging with XFP-tagged CK-B and beta-actin revealed the transient and specific nature of this partitioning process. Overexpression of a catalytic dead CK-B or CK-specific cyclocreatine inhibition caused a significant reduction of actin accumulation in the phagocytic cup area, and reduced complement receptor-mediated, but not Fc-gammaR-mediated, ingestion capacity of macrophages. Finally, we found that inhibition of CK-B affected phagocytosis already at the stage of particle adhesion, most likely via effects on actin polymerization behavior. We propose that CK-B activity in macrophages contributes to complement-induced F-actin assembly events in early phagocytosis by providing local ATP supply.


Asunto(s)
Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/fisiología , Forma BB de la Creatina-Quinasa/metabolismo , Fagocitosis , Adenosina Trifosfato/provisión & distribución , Animales , Adhesión Celular , Proteínas del Sistema Complemento/metabolismo , Forma BB de la Creatina-Quinasa/fisiología , Creatinina/análogos & derivados , Creatinina/farmacología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Mutantes/metabolismo , Proteínas Opsoninas/metabolismo , Fagocitosis/fisiología , Fagosomas/metabolismo , Polímeros/metabolismo , Transporte de Proteínas/fisiología , Factores de Tiempo , Zimosan/metabolismo
9.
Eur J Immunol ; 39(7): 1923-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19585517

RESUMEN

Dendritic cells (DC), professional Ag-presenting cells located in mucosae and lymphoid organs, operate at the interface of innate and adaptive immunity and are likely the first cells to encounter invading HIV-1. Although the C-type lectin DC-Specific ICAM-3-grabbing non-integrin (DC-SIGN) binds to several viruses, including HIV-1, its direct involvement in viral entry remains controversial. Despite its central role in DC function, little is known about the underlying molecular mechanism(s) of DC-SIGN-mediated Ag uptake. Here, we analyzed the early stages of DC-SIGN-mediated endocytosis and demonstrate that both membrane cholesterol and dynamin are required. Confocal microscopy and clathrin RNAi showed that DC-SIGN-mediated internalization occurs via clathrin-coated pits. Electron microscopy of ultrathin sections showed the involvement of DC-SIGN in clathrin-dependent HIV-1 internalization by DC. Currently, DC-specific C-type lectins are considered potential target in anti-tumor clinical trials. Detailed information about how different Ag are internalized via these receptors will facilitate the rational design of targeted therapeutic strategies.


Asunto(s)
Antígenos/metabolismo , Moléculas de Adhesión Celular/metabolismo , Clatrina/metabolismo , VIH-1/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Células CHO , Moléculas de Adhesión Celular/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Clatrina/genética , Cricetinae , Cricetulus , Células Dendríticas/citología , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Dinaminas/genética , Dinaminas/metabolismo , Endocitosis , Humanos , Lectinas Tipo C/genética , Microscopía Confocal , Microscopía Electrónica , ARN Interferente Pequeño/genética , Receptores de Superficie Celular/genética , Solubilidad , Transfección
10.
Mol Cancer ; 8: 54, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19646236

RESUMEN

BACKGROUND: The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. RESULTS: Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. CONCLUSION: The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.


Asunto(s)
Transformación Celular Neoplásica , Fibroblastos/metabolismo , Glucólisis , Fosforilación Oxidativa , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/fisiología , Animales , Línea Celular Transformada , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/ultraestructura , Ácido Láctico/metabolismo , Masculino , Metaboloma , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica de Rastreo , Mitocondrias/metabolismo , NAD/metabolismo , Trasplante de Neoplasias , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Consumo de Oxígeno , Retroviridae/genética , Superóxidos/metabolismo , Proteínas ras/genética , Proteínas ras/fisiología
11.
Cerebellum ; 8(2): 80-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19137382

RESUMEN

Protein tyrosine phosphatases (PTPs) are central players in many different cellular processes and their aberrant activity is associated with multiple human pathologies. In this review, we present current knowledge on the PTPRR subfamily of classical PTPs that is expressed in neuronal cells and comprises receptor-type (PTPBR7, PTP-SL) as well as cytosolic (PTPPBSgamma-37, PTPPBSgamma-42) isoforms. The two receptor-type isoforms PTPBR7 and PTP-SL both localize in late endosomes and the Golgi area. PTPBR7, however, is additionally localized at the cell surface and on early endosomes. During cerebellar maturation, PTPBR7 expression in developing Purkinje cells ceases and is replaced by PTP-SL expression in the mature Purkinje cells. All PTPRR isoforms contain a kinase interacting motif that makes them mitogen-activated protein kinase phosphatases. The distinct subcellular localization of the different PTPRR isoforms may reflect differential roles in growth-factor-induced MAPK-mediated retrograde signaling cascades. Studies in PTPRR-deficient mice established that PTPRR isoforms are physiological regulators of MAPK phosphorylation levels. Surprisingly, PTPRR-deficient mice display defects in motor coordination and balancing skills, while cerebellar morphological abnormalities, which are often encountered in ataxic mouse models, are absent. This is reminiscent of the phenotype observed in a handful of mouse mutants that have alterations in cerebellar calcium ion homeostasis. Elucidation of the molecular mechanisms by which PTPRR deficiency imposes impairment of cerebellar neurons and motor coordination may provide candidate molecules for hereditary cerebellar ataxias that still await identification of the corresponding disease genes.


Asunto(s)
Ataxia Cerebelosa/enzimología , Ataxia Cerebelosa/genética , Cerebelo/enzimología , Cerebelo/crecimiento & desarrollo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Tirosina Fosfatasas Clase 7 Similares a Receptores/metabolismo , Animales , Ataxia Cerebelosa/fisiopatología , Cerebelo/fisiopatología , Ratones , Fosforilación/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patología , Proteínas Tirosina Fosfatasas Clase 7 Similares a Receptores/genética , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura
12.
J Cell Biol ; 164(1): 145-55, 2004 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-14709546

RESUMEN

The C-type lectin dendritic cell (DC)-specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron microscopy, we demonstrate a direct relation between DC-SIGN function as viral receptor and its microlocalization on the plasma membrane. During development of human monocyte-derived DCs, DC-SIGN becomes organized in well-defined microdomains, with an average diameter of 200 nm. Biochemical experiments and confocal microscopy indicate that DC-SIGN microdomains reside within lipid rafts. Finally, we show that the organization of DC-SIGN in microdomains on the plasma membrane is important for binding and internalization of virus particles, suggesting that these multimolecular assemblies of DC-SIGN act as a docking site for pathogens like HIV-1 to invade the host.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Infecciones por Virus ARN/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/ultraestructura , Membrana Celular/ultraestructura , Membrana Celular/virología , Células Cultivadas , Células Dendríticas/ultraestructura , Células Dendríticas/virología , Endocitosis/fisiología , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/patogenicidad , VIH-1/fisiología , Humanos , Inmunohistoquímica , Lectinas Tipo C/inmunología , Lectinas Tipo C/ultraestructura , Microdominios de Membrana/metabolismo , Microdominios de Membrana/ultraestructura , Microscopía Electrónica , Monocitos/metabolismo , Monocitos/ultraestructura , Monocitos/virología , Estructura Terciaria de Proteína/fisiología , Infecciones por Virus ARN/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/ultraestructura , Receptores Virales/inmunología , Receptores Virales/ultraestructura
13.
Mol Biol Cell ; 17(10): 4270-81, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16855029

RESUMEN

The beta2-integrin LFA-1 facilitates extravasation of monocytes (MOs) into the underlying tissues, where MOs can differentiate into dendritic cells (DCs). Although DCs express LFA-1, unlike MOs, they cannot bind to ICAM-1. We hypothesized that an altered integrin organization on the DC plasma membrane might cause this effect and investigated the relationship between membrane organization and function of LFA-1 on MOs and DCs. High-resolution mapping of LFA-1 surface distribution revealed that on MOs LFA-1 function is associated with a distribution in well-defined nanoclusters (100-150-nm diameter). Interestingly, a fraction of these nanoclusters contains primed LFA-1 molecules expressing the specific activation-dependent L16-epitope. Live imaging of MO-T-cell conjugates showed that only these primed nanoclusters are dynamically recruited to the cellular interface forming micrometer-sized assemblies engaged in ligand binding and linked to talin. We conclude that besides affinity regulation, LFA-1 function is controlled by at least three different avidity patterns: random distributed inactive molecules, well-defined ligand-independent proactive nanoclusters, and ligand-triggered micrometer-sized macroclusters.


Asunto(s)
Membrana Celular/metabolismo , Células Dendríticas/fisiología , Antígeno-1 Asociado a Función de Linfocito/fisiología , Monocitos/fisiología , Adhesión Celular , Agregación Celular , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Microdominios de Membrana/fisiología , Modelos Biológicos , Linfocitos T/fisiología
14.
Sci Rep ; 9(1): 3556, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837487

RESUMEN

Local membrane phospholipid enrichment serves as docking platform for signaling proteins involved in many processes including cell adhesion and migration. Tissue-resident dendritic cells (DCs) assemble actomyosin-based structures called podosomes, which mediate adhesion and degradation of extracellular matrix for migration and antigen sampling. Recent evidence suggested the involvement of phospholipase D (PLD) and its product phosphatidic acid (PA) in podosome formation, but the spatiotemporal control of this process is poorly characterized. Here we determined the role of PLD1 and PLD2 isoforms in regulating podosome formation and dynamics in human primary DCs by combining PLD pharmacological inhibition with a fluorescent PA sensor and fluorescence microscopy. We found that ongoing PLD2 activity is required for the maintenance of podosomes, whereas both PLD1 and PLD2 control the early stages of podosome assembly. Furthermore, we captured the formation of PA microdomains accumulating at the membrane cytoplasmic leaflet of living DCs, in dynamic coordination with nascent podosome actin cores. Finally, we show that both PLD1 and PLD2 activity are important for podosome-mediated matrix degradation. Our results provide novel insight into the isoform-specific spatiotemporal regulation of PLD activity and further our understanding of the role of cell membrane phospholipids in controlling localized actin polymerization and cell protrusion.


Asunto(s)
Microdominios de Membrana/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Podosomas/metabolismo , Transducción de Señal , Actinas/metabolismo , Células Dendríticas/citología , Humanos
15.
Nat Commun ; 10(1): 5171, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729386

RESUMEN

Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries.


Asunto(s)
Actinas/química , Actinas/metabolismo , Podosomas/metabolismo , Actinas/genética , Animales , Adhesión Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Movimiento Celular , Células Cultivadas , Células Dendríticas/química , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Mecanotransducción Celular , Ratones , Podosomas/química , Podosomas/genética
16.
BMC Neurosci ; 9: 73, 2008 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-18662381

RESUMEN

BACKGROUND: Neurons require an elaborate system of intracellular transport to distribute cargo throughout axonal and dendritic projections. Active anterograde and retrograde transport of mitochondria serves in local energy distribution, but at the same time also requires input of ATP. Here we studied whether brain-type creatine kinase (CK-B), a key enzyme for high-energy phosphoryl transfer between ATP and CrP in brain, has an intermediary role in the reciprocal coordination between mitochondrial motility and energy distribution. Therefore, we analysed the impact of brain-type creatine kinase (CK-B) deficiency on transport activity and velocity of mitochondria in primary murine neurons and made a comparison to the fate of amyloid precursor protein (APP) cargo in these cells, using live cell imaging. RESULTS: Comparison of average and maximum transport velocities and global transport activity showed that CK-B deficiency had no effect on speed of movement of mitochondria or APP cargo, but that the fraction of motile mitochondria was significantly increased by 36% in neurons derived from CK-B knockout mice. The percentage of motile APP vesicles was not altered. CONCLUSION: CK-B activity does not directly couple to motor protein activity but cells without the enzyme increase the number of motile mitochondria, possibly as an adaptational strategy aimed to enhance mitochondrial distribution versatility in order to compensate for loss of efficiency in the cellular network for ATP distribution.


Asunto(s)
Forma BB de la Creatina-Quinasa/deficiencia , Mitocondrias/fisiología , Neuronas/enzimología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Transporte Axonal/fisiología , Células Cultivadas , Forma BB de la Creatina-Quinasa/genética , Metabolismo Energético , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
17.
Mol Cell Biol ; 25(4): 1402-14, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15684391

RESUMEN

Myotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple protein isoforms carrying distinct C termini. Here, we demonstrate by expressing individual DMPKs in various cell types, including C(2)C(12) and DMPK(-/-) myoblast cells, that unique sequence arrangements in these tails control the specificity of anchoring into intracellular membranes. Mouse DMPK A and C were found to associate specifically with either the endoplasmic reticulum (ER) or the mitochondrial outer membrane, whereas the corresponding human DMPK A and C proteins both localized to mitochondria. Expression of mouse and human DMPK A-but not C-isoforms in mammalian cells caused clustering of ER or mitochondria. Membrane association of DMPK isoforms was resistant to alkaline conditions, and mutagenesis analysis showed that proper anchoring was differentially dependent on basic residues flanking putative transmembrane domains, demonstrating that DMPK tails form unique tail anchors. This work identifies DMPK as the first kinase in the class of tail-anchored proteins, with a possible role in organelle distribution and dynamics.


Asunto(s)
Empalme Alternativo/fisiología , Retículo Endoplásmico/enzimología , Mitocondrias/enzimología , Mioblastos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Retículo Endoplásmico/ultraestructura , Células HeLa , Humanos , Membranas Intracelulares/enzimología , Membranas Intracelulares/ultraestructura , Ratones , Microscopía Inmunoelectrónica , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Mioblastos/ultraestructura , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica , Células 3T3 NIH , Isoformas de Proteínas/metabolismo , Expansión de Repetición de Trinucleótido/fisiología
18.
Front Immunol ; 9: 1908, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186284

RESUMEN

Podosomes are multimolecular cytoskeletal structures that coordinate the migration of tissue-resident dendritic cells (DCs). They consist of a protrusive actin-rich core and an adhesive integrin-rich ring that contains adaptor proteins such as vinculin and zyxin. Individual podosomes are typically interconnected by a dense network of actin filaments giving rise to large podosome clusters. The actin density in podosome clusters complicates the analysis of podosomes by light microscopy alone. Here, we present an optimized procedure for performing super-resolution correlative light and electron microscopy (SR-CLEM) to study the organization of multiple proteins with respect to actin in podosome clusters at the ventral plasma membrane of DCs. We demonstrate that our procedure is suited to correlate at least three colors in super-resolution Airyscan microscopy with scanning electron microscopy (SEM). Using this procedure, we first reveal an intriguing complexity in the organization of ventral and radiating actin filaments in clusters formed by DCs which was not properly detected before by light microscopy alone. Next, we demonstrate a differential organization of vinculin and zyxin with respect to the actin filaments at podosomes. While vinculin mostly resides at sites where the actin filaments connect to the cell membrane, zyxin is primarily associated with filaments close to and on top of the core. Finally, we reveal a novel actin-based structure with SEM that connects closely associated podosome cores and which may be important for podosome topography sensing. Interestingly, these interpodosomal connections, in contrast to the radiating and ventral actin filaments appear to be insensitive to inhibition of actin polymerization suggesting that these pools of actin are not dynamically coupled. Together, our work demonstrates the power of correlating different imaging modalities for studying multimolecular cellular structures and could potentially be further exploited to study processes at the ventral plasma membrane of immune cells such as clathrin-mediated endocytosis or immune synapse formation.


Asunto(s)
Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Podosomas/metabolismo , Podosomas/ultraestructura , Actinas/química , Actinas/metabolismo , Biomarcadores , Humanos , Microscopía , Microscopía Electrónica , Unión Proteica , Multimerización de Proteína , Flujo de Trabajo
19.
FEBS J ; 274(1): 96-108, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17147696

RESUMEN

The single-copy mouse gene Ptprr gives rise to different protein tyrosine phosphatase (PTP) isoforms in neuronal cells through the use of distinct promoters, alternative splicing, and multiple translation initiation sites. Here, we examined the array of post-translational modifications imposed on the PTPRR protein isoforms PTPBR7, PTP-SL, PTPPBSgamma42 and PTPPBSgamma37, which have distinct N-terminal segments and localize to different parts of the cell. All isoforms were found to be short-lived, constitutively phosphorylated proteins. In addition, the transmembrane isoform, PTPBR7, was subject to N-terminal proteolytic processing, in between amino acid position 136 and 137, resulting in an additional, 65-kDa transmembrane PTPRR isoform. Unlike for some other receptor-type PTPs, the proteolytically produced N-terminal ectodomain does not remain associated with this PTPRR-65. Shedding of PTPBR7-derived polypeptides at the cell surface further adds to the molecular complexity of PTPRR biology.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Encéfalo/metabolismo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatasas Clase 7 Similares a Receptores , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA