RESUMEN
How antigen valency affects B cells in vivo during immune responses is not well understood. Here, using HIV immunogens with defined valencies ranging from 1 to 60, we investigated the role of antigen valency during different phases of B cell responses in vivo. Highly multimerized immunogens preferentially rapidly activated cognate B cells, with little affinity discrimination. This led to strong early induction of the transcription factors IRF4 (interferon regulatory factor 4) and Bcl6, driving both early extrafollicular plasma cell and germinal center responses, in a CD4+ T-cell-dependent manner, involving B cells with a broad range of affinities. Low-valency antigens induced smaller effector B cell responses, with preferential recruitment of high-affinity B cells. Thus, antigen valency has multifaceted effects on B cell responses and can dictate affinity thresholds and competitive landscapes for B cells in vivo, with implications for vaccine design.
Asunto(s)
Afinidad de Anticuerpos/inmunología , Antígenos/inmunología , Linfocitos B/inmunología , Sitios de Unión de Anticuerpos/inmunología , Centro Germinal/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/inmunología , Proliferación Celular/fisiología , Factores Reguladores del Interferón/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Células Plasmáticas/inmunología , Multimerización de Proteína/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/inmunologíaRESUMEN
T follicular helper (TFH) cells are a specialized subset of CD4 T cells that deliver critical help signals to B cells for the production of high-affinity Abs. Understanding the genetic program regulating TFH differentiation is critical if one wants to manipulate TFH cells during vaccination. A large number of transcription factor (TFs) involved in the regulation of TFH differentiation have been characterized. However, there are likely additional unknown TFs required for this process. To identify new TFs, we screened a large short hairpin RNA library targeting 353 TFs in mice using an in vivo RNA interference screen. Yin Yang 1 (YY-1) was identified as a novel positive regulator of TFH differentiation. Ablation of YY-1 severely impaired TFH differentiation following acute viral infection and protein immunization. We found that the zinc fingers of YY-1 are critical to support TFH differentiation. Thus, we discovered a novel TF involved in the regulation of TFH cells.
Asunto(s)
Centro Germinal , Linfocitos T Colaboradores-Inductores , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Activación de Linfocitos , Ratones , ARN Interferente Pequeño/metabolismo , Células T Auxiliares FolicularesRESUMEN
The Primary Hyperoxalurias (PH) are rare disorders of metabolism leading to excessive endogenous synthesis of oxalate and recurring calcium oxalate kidney stones. Alanine glyoxylate aminotransferase (AGT), deficient in PH type 1, is a key enzyme in limiting glyoxylate oxidation to oxalate. The affinity of AGT for its co-substrate, alanine, is low suggesting that its metabolic activity could be sub-optimal in vivo. To test this hypothesis, we examined the effect of L-alanine supplementation on oxalate synthesis in cell culture and in mouse models of Primary Hyperoxaluria Type 1 (Agxt KO), Type 2 (Grhpr KO) and in wild-type mice. Our results demonstrated that increasing L-alanine in cells decreased synthesis of oxalate and increased viability of cells expressing GO and AGT when incubated with glycolate. In both wild type and Grhpr KO male and female mice, supplementation with 10% dietary L-alanine significantly decreased urinary oxalate excretion ~30% compared to baseline levels. This study demonstrates that increasing the availability of L-alanine can increase the metabolic efficiency of AGT and reduce oxalate synthesis.
Asunto(s)
Alanina/farmacología , Hiperoxaluria Primaria/metabolismo , Oxalatos/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Células CHO , Cricetulus , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/patología , Ratones , Ratones Noqueados , Transaminasas/genética , Transaminasas/metabolismoRESUMEN
Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast celldependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.
Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Linfa/efectos de los fármacos , Saponinas/farmacología , Receptores Toll-Like/agonistas , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Femenino , Linfa/fisiología , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas , Ratas , Ratas WistarRESUMEN
Many articles have been published on the various treatments of hallux rigidus/limitus but few, if any, have focused solely on the osteotomies performed in the treatment of this disorder and provided a thorough review of the literature and critique of the procedures. Here, we describe the most commonly used, most widely accepted, and most effective osteotomies in the treatment of hallux limitus/rigidus. Along with this discussion are figures and tables to make the information accessible and user friendly. Among the procedures discussed are Keller arthroplasty, Keller interpositional arthroplasty, Bonney-Kessel, Mayo-Stone, Regnauld, Youngswick, Watermann, Watermann-Green, tricorrectional metatarsal osteotomy, sagittal V, LADO (long-arm decompression osteotomy), Drago, Lambrinudi (plantarflexory closing base wedge osteotomy), sagittal Scarf/sagittal Z, and Weil/Mau/distal oblique osteotomy.