Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Cell ; 171(7): 1559-1572.e20, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29245011

RESUMEN

Large-scale transcriptome sequencing efforts have vastly expanded the catalog of long non-coding RNAs (lncRNAs) with varying evolutionary conservation, lineage expression, and cancer specificity. Here, we functionally characterize a novel ultraconserved lncRNA, THOR (ENSG00000226856), which exhibits expression exclusively in testis and a broad range of human cancers. THOR knockdown and overexpression in multiple cell lines and animal models alters cell or tumor growth supporting an oncogenic role. We discovered a conserved interaction of THOR with IGF2BP1 and show that THOR contributes to the mRNA stabilization activities of IGF2BP1. Notably, transgenic THOR knockout produced fertilization defects in zebrafish and also conferred a resistance to melanoma onset. Likewise, ectopic expression of human THOR in zebrafish accelerated the onset of melanoma. THOR represents a novel class of functionally important cancer/testis lncRNAs whose structure and function have undergone positive evolutionary selection.


Asunto(s)
Modelos Animales de Enfermedad , Melanoma/metabolismo , ARN Largo no Codificante/metabolismo , Pez Cebra , Animales , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Proteínas de Unión al ARN/metabolismo , Testículo/metabolismo
3.
Cell ; 135(5): 919-32, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041754

RESUMEN

MALAT1 is a long noncoding RNA known to be misregulated in many human cancers. We have identified a highly conserved small RNA of 61 nucleotides originating from the MALAT1 locus that is broadly expressed in human tissues. Although the long MALAT1 transcript localizes to nuclear speckles, the small RNA is found exclusively in the cytoplasm. RNase P cleaves the nascent MALAT1 transcript downstream of a genomically encoded poly(A)-rich tract to simultaneously generate the 3' end of the mature MALAT1 transcript and the 5' end of the small RNA. Enzymes involved in tRNA biogenesis then further process the small RNA, consistent with its adoption of a tRNA-like structure. Our findings reveal a 3' end processing mechanism by which a single gene locus can yield both a stable nuclear-retained noncoding RNA with a short poly(A) tail-like moiety and a small tRNA-like cytoplasmic RNA.


Asunto(s)
Citoplasma/metabolismo , Procesamiento Postranscripcional del ARN , ARN no Traducido/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Endorribonucleasas/metabolismo , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Neoplasias/genética , Neoplasias/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN no Traducido/genética , Ribonucleasa P/metabolismo
4.
RNA ; 26(11): 1603-1620, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32675111

RESUMEN

Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Pulmón/citología , ARN Largo no Codificante/genética , Factores de Empalme Serina-Arginina/metabolismo , Suero/química , Ciclo Celular , Línea Celular , Fibroblastos/química , Fibroblastos/citología , Células HEK293 , Humanos , Pulmón/química , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Regulación hacia Arriba , Secuenciación del Exoma
5.
PLoS Genet ; 14(11): e1007802, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496290

RESUMEN

The human genome encodes thousands of long noncoding RNA (lncRNA) genes; the function of majority of them is poorly understood. Aberrant expression of a significant number of lncRNAs is observed in various diseases, including cancer. To gain insights into the role of lncRNAs in breast cancer progression, we performed genome-wide transcriptome analyses in an isogenic, triple negative breast cancer (TNBC/basal-like) progression cell lines using a 3D cell culture model. We identified significantly altered expression of 1853 lncRNAs, including ~500 natural antisense transcript (NATs) lncRNAs. A significant number of breast cancer-deregulated NATs displayed co-regulated expression with oncogenic and tumor suppressor protein-coding genes in cis. Further studies on one such NAT, PDCD4-AS1 lncRNA reveal that it positively regulates the expression and activity of the tumor suppressor PDCD4 in mammary epithelial cells. Both PDCD4-AS1 and PDCD4 show reduced expression in TNBC cell lines and in patients, and depletion of PDCD4-AS1 compromised the cellular levels and activity of PDCD4. Further, tumorigenic properties of PDCD4-AS1-depleted TNBC cells were rescued by exogenous expression of PDCD4, implying that PDCD4-AS1 acts upstream of PDCD4. Mechanistically, PDCD4-AS1 stabilizes PDCD4 RNA by forming RNA duplex and controls the interaction between PDCD4 RNA and RNA decay promoting factors such as HuR. Our studies demonstrate crucial roles played by NAT lncRNAs in regulating post-transcriptional gene expression of key oncogenic or tumor suppressor genes, thereby contributing to TNBC progression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Estabilidad del ARN , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Proteínas de Unión al ARN/genética , Neoplasias de la Mama Triple Negativas/genética , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Unión Proteica , ARN sin Sentido/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
6.
Nucleic Acids Res ; 46(19): 10405-10416, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30102375

RESUMEN

Long non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA (miRNA) host genes (MIRHGs) due to pre-miRNA processing, and are categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, the cellular function of most lnc-miRHGs is not well understood. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs that display elevated levels during the G1 phase of the cell cycle. Depletion of MIR100HG-encoded lncRNAs in human cells results in aberrant cell cycle progression without altering the levels of miRNA encoded within MIR100HG. Notably, MIR100HG interacts with HuR/ELAVL1 as well as with several HuR-target mRNAs. Further, MIR100HG-depleted cells show reduced interaction between HuR and three of its target mRNAs, indicating that MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by a MIRHG-encoded lncRNA in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of lnc-miRHGs that are present in human genome.


Asunto(s)
Ciclo Celular/genética , Proteína 1 Similar a ELAV/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Diferenciación Celular/genética , División Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
7.
J Cell Sci ; 130(24): 4180-4192, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29133588

RESUMEN

Nuclear speckles are self-assembled organelles composed of RNAs and proteins. They are proposed to act as structural domains that control distinct steps in gene expression, including transcription, splicing and mRNA export. Earlier studies identified differential localization of a few components within the speckles. It was speculated that the spatial organization of speckle components might contribute directly to the order of operations that coordinate distinct processes. Here, by performing multi-color structured illumination microscopy, we characterized the multilayer organization of speckles at a higher resolution. We found that SON and SC35 (also known as SRSF2) localize to the central region of the speckle, whereas MALAT1 and small nuclear (sn)RNAs are enriched at the speckle periphery. Coarse-grained simulations indicate that the non-random organization arises due to the interplay between favorable sequence-encoded intermolecular interactions of speckle-resident proteins and RNAs. Finally, we observe positive correlation between the total amount of RNA present within a speckle and the speckle size. These results imply that speckle size may be regulated to accommodate RNA accumulation and processing. Accumulation of RNA from various actively transcribed speckle-associated genes could contribute to the observed speckle size variations within a single cell.


Asunto(s)
Núcleo Celular/genética , Proteínas de Unión al ADN/genética , Antígenos de Histocompatibilidad Menor/genética , Orgánulos/genética , ARN Largo no Codificante/genética , Factores de Empalme Serina-Arginina/genética , Núcleo Celular/ultraestructura , Regulación de la Expresión Génica , Células HeLa , Humanos , Orgánulos/ultraestructura , Proteínas/genética , ARN/genética , ARN Nucleolar Pequeño/genética
8.
Haematologica ; 106(5): 1433-1442, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32439726

RESUMEN

ß-thalassemia is a disorder caused by altered hemoglobin protein synthesis and affects individuals worldwide. Severe forms of the disease, left untreated, can result in death before the age of 3 years (1). The standard of care consists of chronic and costly palliative treatment by blood transfusion combined with iron chelation. This dual approach suppresses anemia and reduces iron-related toxicities in patients. Allogeneic bone marrow transplant is an option, but limited by the availability of a highly compatible HSC donor. While gene therapy is been explored in several trials, its use is highly limited to developed regions with centers of excellence and well-established healthcare systems (2). Hence, there remains a tremendous unmet medical need to develop alternative treatment strategies for ß-thalassemia (3). Occurrence of aberrant splicing is one of the processes that affects ß-globin synthesis in ß-thalassemia. The (C>G) IVS-2-745 is a splicing mutation within intron 2 of the ß-globin gene. It leads to an aberrantly spliced mRNA that incorporates an intron fragment. This results in an in-frame premature termination codon that inhibits ß-globin production. Here, we propose the use of uniform 2'-O-methoxyethyl (2'-MOE) splice switching oligos (SSOs) to reverse this aberrant splicing in the pre-mRNA. With these lead SSOs we show aberrant to wild type splice switching. This switching leads to an increase of adult hemoglobin (HbA) up to 80% in erythroid cells from patients with the IVS-2-745 mutation. Furthermore, we demonstrate a restoration of the balance between ß-like- and α-globin chains, and up to an 87% reduction in toxic α-heme aggregates. While examining the potential benefit of 2'-MOE-SSOs in a mixed sickle-thalassemic phenotypic setting, we found reduced HbS synthesis and sickle cell formation due to HbA induction. In summary, 2'-MOE-SSOs are a promising therapy for forms of ß-thalassemia caused by mutations leading to aberrant splicing.

9.
Hum Mol Genet ; 25(23): 5178-5187, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007899

RESUMEN

ISCU myopathy is an inherited disease that primarily affects individuals of northern Swedish descent who share a single point mutation in the fourth intron of the ISCU gene. The current study shows correction of specific phenotypes associated with disease following treatment with an antisense oligonucleotide (ASO) targeted to the site of the mutation. We have shown that ASO treatment diminished aberrant splicing and increased ISCU protein levels in both patient fibroblasts and patient myotubes in a concentration dependent fashion. Upon ASO treatment, levels of SDHB in patient myotubular cell lines increased to levels observed in control myotubular cell lines. Additionally, we have shown that both patient fibroblast and myotubular cell lines displayed an increase in complex II activity with a concomitant decrease in succinate levels in patient myotubular cell lines after ASO treatment. Mitochondrial and cytosolic aconitase activities increased significantly following ASO treatment in patient myotubes. The current study suggests that ASO treatment may serve as a viable approach to correcting ISCU myopathy in patients.


Asunto(s)
Acidosis Láctica/congénito , Proteínas Hierro-Azufre/genética , Enfermedades Musculares/congénito , Oligonucleótidos Antisentido/genética , Succinato Deshidrogenasa/genética , Acidosis Láctica/genética , Acidosis Láctica/patología , Acidosis Láctica/terapia , Femenino , Humanos , Intrones/genética , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Enfermedades Musculares/terapia , Oligonucleótidos Antisentido/uso terapéutico , Fenotipo , Mutación Puntual , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , Succinato Deshidrogenasa/biosíntesis
10.
Genome Res ; 25(9): 1336-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26048247

RESUMEN

Long noncoding (lnc)RNAs have recently emerged as key regulators of gene expression. Here, we performed high-depth poly(A)(+) RNA sequencing across multiple clonal populations of mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs) to comprehensively identify differentially regulated lncRNAs. We establish a biologically robust profile of lncRNA expression in these two cell types and further confirm that the majority of these lncRNAs are enriched in the nucleus. Applying weighted gene coexpression network analysis, we define a group of lncRNAs that are tightly associated with the pluripotent state of ESCs. Among these, we show that acute depletion of Platr14 using antisense oligonucleotides impacts the differentiation- and development-associated gene expression program of ESCs. Furthermore, we demonstrate that Firre, a lncRNA highly enriched in the nucleoplasm and previously reported to mediate chromosomal contacts in ESCs, controls a network of genes related to RNA processing. Together, we provide a comprehensive, up-to-date, and high resolution compilation of lncRNA expression in ESCs and NPCs and show that nuclear lncRNAs are tightly integrated into the regulation of ESC gene expression.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Transcriptoma , Animales , Diferenciación Celular/genética , Núcleo Celular , Análisis por Conglomerados , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
11.
Mol Cell ; 39(6): 925-38, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20797886

RESUMEN

Alternative splicing (AS) of pre-mRNA is utilized by higher eukaryotes to achieve increased transcriptome and proteomic complexity. The serine/arginine (SR) splicing factors regulate tissue- or cell-type-specific AS in a concentration- and phosphorylation-dependent manner. However, the mechanisms that modulate the cellular levels of active SR proteins remain to be elucidated. In the present study, we provide evidence for a role for the long nuclear-retained regulatory RNA (nrRNA), MALAT1 in AS regulation. MALAT1 interacts with SR proteins and influences the distribution of these and other splicing factors in nuclear speckle domains. Depletion of MALAT1 or overexpression of an SR protein changes the AS of a similar set of endogenous pre-mRNAs. Furthermore, MALAT1 regulates cellular levels of phosphorylated forms of SR proteins. Taken together, our results suggest that MALAT1 regulates AS by modulating the levels of active SR proteins. Our results further highlight the role for an nrRNA in the regulation of gene expression.


Asunto(s)
Empalme Alternativo/genética , Proteínas Nucleares/metabolismo , ARN no Traducido/fisiología , Proteínas de Unión al ARN/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Núcleo Celular/genética , Núcleo Celular/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Espacio Intranuclear/metabolismo , Ratones , Antígenos de Histocompatibilidad Menor , Mitosis/genética , Proteínas Nucleares/genética , Fosforilación/fisiología , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Factores de Empalme Serina-Arginina , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Nucleic Acids Res ; 44(6): 2898-908, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26826711

RESUMEN

The RNase P-mediated endonucleolytic cleavage plays a crucial role in the 3' end processing and cellular accumulation of MALAT1, a nuclear-retained long noncoding RNA that promotes malignancy. The regulation of this cleavage event is largely undetermined. Here we characterize a broadly expressed natural antisense transcript at the MALAT1 locus, designated as TALAM1, that positively regulates MALAT1 levels by promoting the 3' end cleavage and maturation of MALAT1 RNA. TALAM1 RNA preferentially localizes at the site of transcription, and also interacts with MALAT1 RNA. Depletion of TALAM1 leads to defects in the 3' end cleavage reaction and compromises cellular accumulation of MALAT1. Conversely, overexpression of TALAM1 facilitates the cleavage reaction in trans Interestingly, TALAM1 is also positively regulated by MALAT1 at the level of both transcription and RNA stability. Together, our data demonstrate a novel feed-forward positive regulatory loop that is established to maintain the high cellular levels of MALAT1, and also unravel the existence of sense-antisense mediated regulatory mechanism for cellular lncRNAs that display RNase P-mediated 3' end processing.


Asunto(s)
Núcleo Celular/metabolismo , ARN sin Sentido/genética , ARN Largo no Codificante/antagonistas & inhibidores , Secuencia de Bases , Línea Celular Tumoral , Regulación de la Expresión Génica , Células HCT116 , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , División del ARN , Estabilidad del ARN , ARN sin Sentido/química , ARN sin Sentido/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal
13.
Nucleic Acids Res ; 44(5): 2093-109, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26553810

RESUMEN

High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation.


Asunto(s)
Hígado/efectos de los fármacos , Oligonucleótidos Antisentido/toxicidad , Oligonucleótidos/toxicidad , ARN Mensajero/genética , Ribonucleasa H/genética , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Análisis por Micromatrices , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Precursores del ARN/antagonistas & inhibidores , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/metabolismo , Transcriptoma/efectos de los fármacos
14.
PLoS Genet ; 9(3): e1003368, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555285

RESUMEN

The long noncoding MALAT1 RNA is upregulated in cancer tissues and its elevated expression is associated with hyper-proliferation, but the underlying mechanism is poorly understood. We demonstrate that MALAT1 levels are regulated during normal cell cycle progression. Genome-wide transcriptome analyses in normal human diploid fibroblasts reveal that MALAT1 modulates the expression of cell cycle genes and is required for G1/S and mitotic progression. Depletion of MALAT1 leads to activation of p53 and its target genes. The cell cycle defects observed in MALAT1-depleted cells are sensitive to p53 levels, indicating that p53 is a major downstream mediator of MALAT1 activity. Furthermore, MALAT1-depleted cells display reduced expression of B-MYB (Mybl2), an oncogenic transcription factor involved in G2/M progression, due to altered binding of splicing factors on B-MYB pre-mRNA and aberrant alternative splicing. In human cells, MALAT1 promotes cellular proliferation by modulating the expression and/or pre-mRNA processing of cell cycle-regulated transcription factors. These findings provide mechanistic insights on the role of MALAT1 in regulating cellular proliferation.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias , ARN Largo no Codificante , Transactivadores/metabolismo , Empalme Alternativo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
J Pharmacol Exp Ther ; 355(2): 329-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26330536

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3'-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2',4'-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2'-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1.


Asunto(s)
Distrofia Miotónica/tratamiento farmacológico , Proteína Quinasa de Distrofia Miotónica/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos/farmacología , Animales , Línea Celular , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/enzimología , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , Proteína Quinasa de Distrofia Miotónica/genética , Oligonucleótidos/química , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Mol Ther ; 22(12): 2093-2106, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25101598

RESUMEN

Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington/terapia , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Oligonucleótidos Antisentido/administración & dosificación , Tionucleótidos/administración & dosificación , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Silenciador del Gen , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Inyecciones , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/farmacología , Polimorfismo de Nucleótido Simple , Ratas , Ratas Sprague-Dawley , Tionucleótidos/farmacología
17.
J Cell Sci ; 123(Pt 21): 3734-44, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20940252

RESUMEN

In higher eukaryotic cells, long non-protein-coding RNAs (lncRNAs) have been implicated in a wide array of cellular functions. Cell- or tissue-specific expression of lncRNA genes encoded in the mammalian genome is thought to contribute to the complex gene networks needed to regulate cellular function. Here, we have identified a novel species of polypurine triplet repeat-rich lncRNAs, designated as GAA repeat-containing RNAs (GRC-RNAs), that localize to numerous punctate foci in the mammalian interphase nuclei. GRC-RNAs consist of a heterogeneous population of RNAs, ranging in size from ~1.5 kb to ~4 kb and localize to subnuclear domains, several of which associate with GAA.TTC-repeat-containing genomic regions. GRC-RNAs are components of the nuclear matrix and interact with various nuclear matrix-associated proteins. In mitotic cells, GRC-RNAs form distinct cytoplasmic foci and, in telophase and G1 cells, localize to the midbody, a structure involved in accurate cell division. Differentiation of tissue culture cells leads to a decrease in the number of GRC-RNA nuclear foci, albeit with an increase in size as compared with proliferating cells. Conversely, the number of GRC-RNA foci increases during cellular transformation. We propose that nuclear GRC-RNAs represent a novel family of mammalian lncRNAs that might play crucial roles in the cell nucleus.


Asunto(s)
Núcleo Celular/metabolismo , ARN no Traducido/metabolismo , Repeticiones de Trinucleótidos/fisiología , Animales , Ciclo Celular , Diferenciación Celular/genética , Núcleo Celular/genética , Proliferación Celular , Células HeLa , Humanos , Interfase/genética , Ratones , Purinas/metabolismo , ARN no Traducido/genética
18.
J Pharmacol Exp Ther ; 342(1): 150-62, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22505629

RESUMEN

Antisense oligonucleotides (ASO) containing 2'-O-methoxyethyl ribose (2'-MOE) modifications have been shown to possess both excellent pharmacokinetic properties and robust pharmacological activity in several animal models of human disease. 2'-MOE ASOs are generally well tolerated, displaying minimal to mild proinflammatory effect at doses far exceeding therapeutic doses. Although the vast majority of 2'-MOE ASOs are safe and well tolerated, a small subset of ASOs inducing acute inflammation in mice has been identified. The mechanism for these findings is not clear at this point, but the effects are clearly sequence-specific. One of those ASOs, ISIS 147420, causes a severe inflammatory response atypical of this class of oligonucleotides characterized by induction in interferon-ß (IFN-ß) at 48 h followed by acute transaminitis and extensive hepatocyte apoptosis and necrosis at 72 h. A large number of interferon-stimulated genes were significantly up-regulated in liver as early as 24 h. We speculated that a specific sequence motif might cause ISIS 147420 to be mistaken for viral RNA or DNA, thus triggering an acute innate immune response. ISIS 147420 toxicity was independent of Toll-like receptors, because there was no decrease in IFN-ß in Toll/interleukin-1 receptor-domain-containing adapter-inducing IFN-ß or Myd88-deficient mice. The involvement of cytosolic retinoic acid-inducible gene (RIG)-I-like pattern recognition receptors was also investigated. Pretreatment of mice with melanoma differentiation-associated gene 5 (MDA5) and IFN-ß promoter stimulator-1 ASOs, but not RIG-I or laboratory of genetics and physiology 2 (LGP2) ASOs, prevented the increase in IFN-ß and alanine aminotransferase induced by ISIS 147420. These results revealed a novel mechanism of oligonucleotide-mediated toxicity requiring both MDA5 and IPS-1 and resulting in the activation of the innate immune response.


Asunto(s)
ARN Helicasas DEAD-box/inmunología , ADN/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Oligonucleótidos Antisentido/inmunología , Ribosa/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Alanina Transaminasa/genética , Alanina Transaminasa/inmunología , Alanina Transaminasa/metabolismo , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/genética , ADN/metabolismo , Hepatocitos/inmunología , Hepatocitos/metabolismo , Inmunidad Innata/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1 , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Oligonucleótidos Antisentido/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Ribosa/genética , Ribosa/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo
19.
Mol Ther ; 19(12): 2178-85, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21971427

RESUMEN

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion in the huntingtin gene (HTT) that results in a toxic gain of function in the mutant huntingtin protein (mHTT). Reducing the expression of mHTT is therefore an attractive therapy for HD. However, wild-type HTT protein is essential for development and has critical roles in maintaining neuronal health. Therapies for HD that reduce wild-type HTT may therefore generate unintended negative consequences. We have identified single-nucleotide polymorphism (SNP) targets in the human HD population for the disease-specific targeting of the HTT gene. Using primary cells from patients with HD and the transgenic YAC18 and BACHD mouse lines, we developed antisense oligonucleotide (ASO) molecules that potently and selectively silence mHTT at both exonic and intronic SNP sites. Modification of these ASOs with S-constrained-ethyl (cET) motifs significantly improves potency while maintaining allele selectively in vitro. The developed ASO is potent and selective for mHTT in vivo after delivery to the mouse brain. We demonstrate that potent and selective allele-specific knockdown of the mHTT protein can be achieved at therapeutically relevant SNP sites using ASOs in vitro and in vivo.


Asunto(s)
Enfermedad de Huntington/terapia , Proteínas Mutantes/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Oligonucleótidos Antisentido/uso terapéutico , Polimorfismo de Nucleótido Simple/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Alelos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Silenciador del Gen , Terapia Genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Linaje , ARN Mensajero/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Expansión de Repetición de Trinucleótido/genética
20.
Nucleic Acids Res ; 37(1): 70-7, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19015151

RESUMEN

Chemically modified antisense oligonucleotides (ASOs) are widely used as a tool to functionalize microRNAs (miRNAs). Reduction of miRNA level after ASO inhibition is commonly reported to show efficacy. Whether this is the most relevant endpoint for measuring miRNA inhibition has not been adequately addressed in the field although it has important implications for evaluating miRNA targeting studies. Using a novel approach to quantitate miRNA levels in the presence of excess ASO, we have discovered that the outcome of miRNA inhibition can vary depending on the chemical modification of the ASO. Although some miRNA inhibitors cause a decrease in mature miRNA levels, we have identified a novel 2'-fluoro/2'-methoxyethyl modified ASO motif with dramatically improved in vivo potency which does not. These studies show there are multiple mechanisms of miRNA inhibition by ASOs and that evaluation of secondary endpoints is crucial for interpreting miRNA inhibition studies.


Asunto(s)
MicroARNs/antagonistas & inhibidores , Oligonucleótidos Antisentido/farmacología , Animales , Regulación de la Expresión Génica , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/análisis , MicroARNs/metabolismo , Oligonucleótidos Antisentido/química , Ácidos Nucleicos de Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA