Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(6): 3384-3397, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38739855

RESUMEN

This work cross-correlated rheological, thermodynamic, and conformational features of several natural polysaccharides to their cryoprotective performance. The basis of cryoprotection of FucoPol, pectin, and agar revealed a causal combination of (i) an emerging sol-gel transition (p = 0.014) at near-hypothermia (4 °C), (ii) noncolligative attenuated supercooling of the kinetic freezing point of water (p = 0.026) supporting ice growth anticipation, and (iii) increased conformational order (p < 0.0001), where helix-/sheet-like features boost cryoprotection. FucoPol, of highest cryoprotective performance, revealed a predominantly helical structure (α/ß = 1.5) capable of forming a gel state at 4 °C and the highest degree of supercooling attenuation (TH = 6.2 °C). Ice growth anticipation with gel-like polysaccharides suggests that the gel matrix neutralizes elastic deformations and lethal cell volumetric fluctuations during freezing, thus preventing the loss of homeostasis and increasing post-thaw viability. Ultimately, structured gels capable of attenuated supercooling enable cryoprotective action at the polymer-cell interface, in addition to polymer-ice interactions. This rationale potentiates implementing alternative, biobased, noncytotoxic polymers in cryobiology.


Asunto(s)
Supervivencia Celular , Criopreservación , Crioprotectores , Polisacáridos , Crioprotectores/química , Crioprotectores/farmacología , Criopreservación/métodos , Polisacáridos/química , Polisacáridos/farmacología , Supervivencia Celular/efectos de los fármacos , Hielo , Geles/química , Congelación , Transición de Fase , Pectinas/química , Pectinas/farmacología
2.
Materials (Basel) ; 17(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673131

RESUMEN

In recent years, polyhydroxyalkanoates (PHAs) have gained notoriety because of their desirable properties that include proven biodegradability, biocompatibility, and thermal stability, which make them suitable alternatives to fossil-based polymers. However, the widespread use of PHAs is still challenging because of their production costs, which are greatly associated with the cultivation medium used for bacterial cultivation. In Portugal, one-quarter of the forest area is covered by Eucalyptus globulus wood, making its residues a cheap, abundant, and sustainable potential carbon source for biotechnological uses. In this work, eucalyptus bark was used as the sole feedstock for PHA production in a circular bioeconomic approach. Eucalyptus bark hydrolysate was obtained after enzymatic saccharification using Cellic® CTec3, resulting in a sugar-rich solution containing glucose and xylose. Although with differing performances, several bacteria were able to grow and produce PHA with distinct compositions, using the enzymatic hydrolysate as the sole carbon source. Pseudomonas citronellolis NRRL B-2504 achieved a high cellular growth rate in bioreactor assays (24.4 ± 0.15 g/L) but presented a low accumulation of a medium-chain-length PHA (mcl-PHA) comprising the monomers hydroxydecanoate (HD, 65%), hydroxydodecanoate (HDd, 25%), and hydroxytetradecanoate (HTd, 14%). Burkholderia thailandensis E264, on the other hand, reached a lower cellular growth rate (8.87 ± 0.34 g/L) but showed a higher biopolymer accumulation, with a polyhydroxybutyrate (PHB) content in the cells of 12.3 wt.%. The new isolate, Pseudomonas sp., revealed that under nitrogen availability, it was able to reach a higher accumulation of the homopolymer PHB (31 wt.%). These results, although preliminary, demonstrate the suitability of eucalyptus bark's enzymatic hydrolysate as a feedstock for PHA production, thus offering an exciting avenue for achieving sustainable and environmentally responsible plastic products from an undervalued forestry waste.

3.
Int J Biol Macromol ; 261(Pt 2): 129577, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246459

RESUMEN

Biological cryopreservation often involves using a cryoprotective agent (CPA) to mitigate lethal physical stressors cells endure during freezing and thawing, but effective CPA concentrations are cytotoxic. Hence, natural polysaccharides have been studied as biocompatible alternatives. Here, a subset of 26 natural polysaccharides of various chemical composition was probed for their potential in enhancing the metabolic post-thaw viability (PTV) of cryopreserved Vero cells. The best performing cryoprotective polysaccharides contained significant fucose amounts, resulting in average PTV 2.8-fold (up to 3.1-fold) compared to 0.8-fold and 2.2-fold for all non-cryoprotective and cryoprotective polysaccharides, respectively, outperforming the optimized commercial CryoStor™ CS5 formulation (2.6-fold). Stoichiometrically, a balance between fucose (18-35.7 mol%), uronic acids (UA) (13.5-26 mol%) and high molecular weight (MW > 1 MDa) generated optimal PTV. Principal component analysis (PCA) revealed that fucose enhances cell survival by a charge-independent, MW-scaling mechanism (PC1), drastically different from the charge-dominated ice growth disruption of UA (PC2). Its neutral nature and unique properties distinguishable from other neutral monomers suggest fucose may play a passive role in conformational adaptability of polysaccharide to ice growth inhibition, or an active role in cell membrane stabilization through binding. Ultimately, fucose-rich anionic polysaccharides may indulge in polymer-ice and polymer-cell interactions that actively disrupt ice and minimize lethal volumetric fluctuations due to a balanced hydrophobic-hydrophilic character. Our research showed the critical role neutral fucose plays in enhancing cellular cryopreservation outcomes, disputing previous assumptions of polyanionicity being the sole governing predictor of cryoprotection.


Asunto(s)
Fucosa , Hielo , Animales , Chlorocebus aethiops , Fucosa/metabolismo , Células Vero , Congelación , Crioprotectores/farmacología , Crioprotectores/química , Criopreservación/métodos , Polisacáridos/farmacología , Polímeros/farmacología , Supervivencia Celular
4.
Int J Biol Macromol ; 274(Pt 2): 133312, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914406

RESUMEN

Recently, polysaccharide-based hydrogels crosslinked with the trivalent iron cation have attracted interest due to their remarkable properties that include high mechanical stability, stimuli-responsiveness, and enhanced absorptivity. In this study, a Fe3+ crosslinked hydrogel was prepared using the biocompatible extracellular polysaccharide (EPS) secreted by the marine bacterium Alteromonas macleodii Mo169. Hydrogels with mechanical strengths (G') ranging from 0.3 kPa to 44.5 kPa were obtained as a result of the combination of different Fe3+ (0.05-9.95 g L-1) and EPS (0.3-1.7 %) concentrations. All the hydrogels had a water content above 98 %. Three different hydrogels, named HA, HB, and HC, were chosen for further characterization. With strength values (G') of 3.2, 28.9, and 44.5 kPa, respectively, these hydrogels might meet the strength requirements for several specific applications. Their mechanical resistance increased as higher Fe3+ and polymer concentrations were used in their preparation (the compressive hardness increased from 8.7 to 192.1 kPa for hydrogel HA and HC, respectively). In addition, a tighter mesh was noticed for HC, which was correlated to its lower swelling ratio value compared to HA and HB. Overall, this preliminary study highlighted the potential of these hydrogels for tissue engineering, drug delivery, or wound healing applications.


Asunto(s)
Alteromonas , Hidrogeles , Hierro , Polisacáridos Bacterianos , Hidrogeles/química , Alteromonas/química , Polisacáridos Bacterianos/química , Hierro/química , Materiales Biocompatibles/química , Reactivos de Enlaces Cruzados/química , Fuerza Compresiva
5.
Microorganisms ; 11(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38138058

RESUMEN

The exposure of microorganisms to conventional plastics is a relatively recent occurrence, affording limited time for evolutionary adaptation. As part of the EU-funded project BioICEP, this study delves into the plastic degradation potential of microorganisms isolated from sites with prolonged plastic pollution, such as plastic-polluted forests, biopolymer-contaminated soil, oil-contaminated soil, municipal landfill, but also a distinctive soil sample with plastic pieces buried three decades ago. Additionally, samples from Arthropoda species were investigated. In total, 150 strains were isolated and screened for the ability to use plastic-related substrates (Impranil dispersions, polyethylene terephthalate, terephthalic acid, and bis(2-hydroxyethyl) terephthalate). Twenty isolates selected based on their ability to grow on various substrates were identified as Streptomyces, Bacillus, Enterococcus, and Pseudomonas spp. Morphological features were recorded, and the 16S rRNA sequence was employed to construct a phylogenetic tree. Subsequent assessments unveiled that 5 out of the 20 strains displayed the capability to produce polyhydroxyalkanoates, utilizing pre-treated post-consumer PET samples. With Priestia sp. DG69 and Neobacillus sp. DG40 emerging as the most successful producers (4.14% and 3.34% of PHA, respectively), these strains are poised for further utilization in upcycling purposes, laying the foundation for the development of sustainable strategies for plastic waste management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA