RESUMEN
Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 µm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, ß-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.
Asunto(s)
Diferenciación Celular , Enfermedades por Prión , Esferoides Celulares , Esferoides Celulares/metabolismo , Ratones , Animales , Diferenciación Celular/fisiología , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Línea Celular , Técnicas de Cultivo de Célula/métodos , Neuronas/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Priones/metabolismoRESUMEN
BACKGROUND INFORMATION: Cellular prion protein (PrPC ) is infamous for its role in prion diseases. The physiological function of PrPC remains enigmatic, but several studies point to its involvement in cell differentiation processes. To test this possibility, we monitored PrPC changes during the differentiation of prion-susceptible CAD 5 cells, and then we analysed the effect of PrPC ablation on the differentiation process. RESULTS: Neuronal CAD 5 cells differentiate within 5 days of serum withdrawal, with the majority of the cells developing long neurites. This process is accompanied by an up to sixfold increase in PrPC expression and enhanced N-terminal ß-cleavage of the protein, which suggests a role for the PrPC in the differentiation process. Moreover, the majority of PrPC in differentiated cells is inside the cell, and a large proportion of the protein does not associate with membrane lipid rafts. In contrast, PrPC in proliferating cells is found mostly on the cytoplasmic membrane and is predominantly associated with lipid rafts. To determine the importance of PrPC in cell differentiation, a CAD 5 PrP-/- cell line with ablated PrPC expression was created using the CRISPR/Cas9 system. We observed no considerable difference in morphology, proliferation rate or expression of molecular markers between CAD 5 and CAD 5 PrP-/- cells during the differentiation initiated by serum withdrawal. CONCLUSIONS: PrPC characteristics, such as cell localisation, level of expression and posttranslational modifications, change during CAD 5 cell differentiation, but PrPC ablation does not change the course of the differentiation process. SIGNIFICANCE: Ablation of PrPC expression does not affect CAD 5 cell differentiation, although we observed many intriguing changes in PrPC features during the process. Our study does not support the concept that PrPC is important for neuronal cell differentiation, at least in simple in vitro conditions.
Asunto(s)
Diferenciación Celular , Neuronas/citología , Proteínas PrPC/metabolismo , Priones/metabolismo , Animales , Línea Celular , Microdominios de Membrana , Ratones , Neuronas/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
Evaluating nanoparticle (NP) toxicity in human cell systems is a fundamental requirement for future NP biomedical applications. In this study, we have designed a screening assay for assessing different types of cell death induced by NPs in human umbilical vein endothelial cell (HUVEC) culture. This assay consists of WST-8, LDH and Hoechst 33342 staining, all performed in one well, which enables an evaluation of cell viability, necrosis and apoptosis, respectively, in the same cell sample. The 96-well format and automated processing of fluorescent images enhances the assay rapidity and reproducibility. After testing the assay functionality with agents that induced different types of cell death, we investigated the endothelial toxicity of superparamagnetic iron oxide nanoparticles (SPIONs, 8 nm), silica nanoparticles (SiNPs, 7-14 nm) and carboxylated multiwall carbon nanotubes (CNTCOOHs, 60 nm). Our results indicated that all the tested NP types induced decreases in cell viability after 24 hours at a concentration of 100 µg/ml. SPIONs caused the lowest toxicity in HUVECs. By contrast, SiNPs induced pronounced necrosis and apoptosis. A time course experiment showed the gradual toxic effect of all the tested NPs. CNTCOOHs inhibited tetrazolium derivatives at 100 µg/ml, causing false negative results from the WST-8 and LDH assay. In summary, our data demonstrate that the presented "three-in-one" screening assay is capable of evaluating NP toxicity effectively and reliably. Due to its simultaneous utilization of two different methods to assess cell viability, this assay is also capable of revealing, if NPs interfere with tetrazolium salts.