RESUMEN
Streptococcus pneumoniae (S.p.) is the most common causative agent of community-acquired pneumonia worldwide. A key pathogenic mechanism that exacerbates severity of disease is the disruption of the alveolar-capillary barrier. However, the specific virulence mechanisms responsible for this in the human lung are not yet fully understood.In this study, we infected living human lung tissue with S.p. and observed a significant degradation of the central junctional proteins occludin and VE-cadherin, indicating barrier disruption. Surprisingly, neither pneumolysin, bacterial hydrogen peroxide nor pro-inflammatory activation were sufficient to cause this junctional degradation. Instead, pneumococcal infection led to a significant decrease of pH (approximately 6), resulting in acidification of the alveolar microenvironment, which was linked to junctional degradation. Stabilising the pH at physiological levels during infection reversed this effect, even in a therapeutic-like approach.Further analysis of bacterial metabolites and RNA sequencing revealed sugar consumption and subsequent lactate production were the major factors contributing to bacterially induced alveolar acidification, which also hindered the release of critical immune factors.Our findings highlight bacterial metabolite-induced acidification as an independent virulence mechanism for barrier disruption and inflammatory dysregulation in pneumonia. Thus, our data suggest that strictly monitoring and buffering alveolar pH during infections caused by fermentative bacteria could serve as an adjunctive therapeutic strategy for sustaining barrier integrity and immune response.
RESUMEN
BACKGROUND: The upper respiratory tract (URT) is the primary entry site for severe acute respiratory syndrome 2 (SARS-CoV-2) and other respiratory viruses, but its involvement in viral amplification and pathogenesis remains incompletely understood. METHODS: In this study, we investigated primary nasal epithelial cultures, as well as vital explanted tissues, to scrutinize the tropism of wild-type SARS-CoV-2 and the recently emerged B.1.1.7 variant. RESULTS: Our analyses revealed a widespread replication competence of SARS-CoV-2 in polarized nasal epithelium as well as in the examined URT and salivary gland tissues, which was also shared by the B.1.1.7 virus. CONCLUSIONS: In our analyses, we highlighted the active role of these anatomic sites in coronavirus disease 2019.
Asunto(s)
COVID-19/virología , Sistema Respiratorio/virología , Tropismo Viral , Replicación Viral , Humanos , Infecciones del Sistema Respiratorio , SARS-CoV-2 , TráqueaRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0276115.].
RESUMEN
Human-based organ models can provide strong predictive value to investigate the tropism, virulence, and replication kinetics of viral pathogens. Currently, such models have received widespread attention in the study of SARS-CoV-2 causing the COVID-19 pandemic. Applicable to a large set of organoid models and viruses, we provide a step-by-step work instruction for the infection of human alveolar-like organoids with SARS-CoV-2 in this protocol collection. We also prepared a detailed description on state-of-the-art methodologies to assess the infection impact and the analysis of relevant host factors in organoids. This protocol collection consists of five different sets of protocols. Set 1 describes the protein extraction from human alveolar-like organoids and the determination of protein expression of angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and FURIN as exemplary host factors of SARS-CoV-2. Set 2 provides detailed guidance on the extraction of RNA from human alveolar-like organoids and the subsequent qPCR to quantify the expression level of ACE2, TMPRSS2, and FURIN as host factors of SARS-CoV-2 on the mRNA level. Protocol set 3 contains an in-depth explanation on how to infect human alveolar-like organoids with SARS-CoV-2 and how to quantify the viral replication by plaque assay and viral E gene-based RT-qPCR. Set 4 provides a step-by-step protocol for the isolation of single cells from infected human alveolar-like organoids for further processing in single-cell RNA sequencing or flow cytometry. Set 5 presents a detailed protocol on how to perform the fixation of human alveolar-like organoids and guides through all steps of immunohistochemistry and in situ hybridization to visualize SARS-CoV-2 and its host factors. The infection and all subsequent analytical methods have been successfully validated by biological replications with human alveolar-like organoids based on material from different donors.
Asunto(s)
COVID-19 , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Furina/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Pandemias , Pulmón/metabolismo , OrganoidesRESUMEN
The transcription factor Krueppel-like factor (KLF) 4 fosters the pro-inflammatory immune response in macrophages and polymorphonuclear neutrophils (PMNs) when stimulated with Streptococcus pneumoniae, the main causative pathogen of community-acquired pneumonia (CAP). Here, we investigated the impact of KLF4 expression in myeloid cells such as macrophages and PMNs on inflammatory response and disease severity in a pneumococcal pneumonia mouse model and in patients admitted to hospital with CAP. We found that mice with a myeloid-specific knockout of KLF4 mount an insufficient early immune response with reduced levels of pro-inflammatory cytokines and increased levels of the anti-inflammatory cytokine interleukin (IL) 10 in bronchoalveolar lavage fluid and plasma and an impaired bacterial clearance from the lungs 24 hours after infection with S. pneumoniae. This results in higher rates of bacteremia, increased lung tissue damage, more severe symptoms of infection and reduced survival. Higher KLF4 gene expression levels in the peripheral blood of patients with CAP at hospital admission correlate with a favourable clinical presentation (lower sequential organ failure assessment (SOFA) score), lower serum levels of IL-10 at admission, shorter hospital stay and lower mortality or requirement of intensive care unit treatment within 28 days after admission. Thus, KLF4 in myeloid cells such as macrophages and PMNs is an important regulator of the early pro-inflammatory immune response and, therefore, a potentially interesting target for therapeutic interventions in pneumococcal pneumonia.
Asunto(s)
Bacteriemia/patología , Infecciones Comunitarias Adquiridas/patología , Fagocitos/metabolismo , Neumonía Neumocócica/patología , Adulto , Anciano , Animales , Bacteriemia/diagnóstico , Líquido del Lavado Bronquioalveolar/citología , Infecciones Comunitarias Adquiridas/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-10/metabolismo , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neumonía Neumocócica/inmunología , Índice de Severidad de la Enfermedad , Streptococcus pneumoniae/inmunologíaRESUMEN
The recruitment and activation of polymorphonuclear neutrophils (PMNs) are of central importance for the elimination of pathogens in bacterial infections. We investigated the Streptococcus pneumoniae-dependent induction of the transcription factor Krüppel-like factor (KLF) 4 in PMNs as a potential regulator of PMN activation. We found that KLF4 expression is induced in human blood-derived PMNs in a time- and dose-dependent manner by wild-type S. pneumoniae and capsule knockout mutants. Unencapsulated knockout mutants induced stronger KLF4 expression than encapsulated wild types. The presence of autolysin LytA-competent (thus viable) pneumococci and LytA-mediated bacterial autolysis were required for KLF4 induction in human and murine PMNs. LyzMcre-mediated knockdown of KLF4 in murine blood-derived PMNs revealed that KLF4 influences pneumococci killing and increases the release of the proinflammatory cytokines tumor necrosis factor α and keratinocyte chemoattractant and decreases the release of the anti-inflammatory cytokine interleukin-10. Thus, S. pneumoniae induces KLF4 expression in PMNs, which contributes to PMN activation in S. pneumoniae infection.