Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 168(1): 257-68, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21833644

RESUMEN

Modest increases in global temperature have been implicated in causing population extirpations and range shifts in taxa inhabiting colder environs and in ectotherms whose thermoregulation is more closely tied to environmental conditions. Many arid-adapted endotherms already experience conditions at their physiological limits, so it is conceivable that they could be similarly affected by warming temperatures. We explored how climatic variables might influence the apparent survival of the banner-tailed kangaroo rat (Dipodomys spectabilis), a rodent endemic to the Chihuahuan Desert of North America and renowned for its behavioral and physiological adaptations to arid environments. Relative variable weight, strength of variable relationships, and other criteria indicated that summer, diurnal land surface temperature (SD_LST) was the primary environmental driver of apparent survival in these arid-adapted rodents. Higher temperatures had a negative effect on apparent survival, which ranged from 0.15 (SE = 0.04) for subadults to 0.50 (SE = 0.07) for adults. Elevated SD_LST may negatively influence survival through multiple pathways, including increased water loss and energy expenditure that could lead to chronic stress and/or hyperthermia that could cause direct mortality. Land surface temperatures are predicted to increase by as much 6.5°C by 2099, reducing apparent survival of adults to ~0.15 in some regions of the species' range, possibly causing a shift in their distribution. The relationship between SD_LST and survival suggests a mechanism whereby physiological tolerances are exceeded resulting in a reduction to individual fitness that may ultimately cause a shift in the species' range over time.


Asunto(s)
Cambio Climático , Dipodomys/fisiología , Adaptación Fisiológica , Animales , Regulación de la Temperatura Corporal , Fiebre , Modelos Biológicos , New Mexico , Estaciones del Año , Tasa de Supervivencia , Temperatura
2.
Ecol Evol ; 11(14): 9741-9764, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34306659

RESUMEN

Remote cameras are a common method for surveying wildlife and recently have been promoted for implementing large-scale regional biodiversity monitoring programs. The use of camera-trap data depends on the correct identification of animals captured in the photographs, yet misidentification rates can be high, especially when morphologically similar species co-occur, and this can lead to faulty inferences and hinder conservation efforts. Correct identification is dependent on diagnosable taxonomic characters, photograph quality, and the experience and training of the observer. However, keys rooted in taxonomy are rarely used for the identification of camera-trap images and error rates are rarely assessed, even when morphologically similar species are present in the study area. We tested a method for ensuring high identification accuracy using two sympatric and morphologically similar chipmunk (Neotamias) species as a case study. We hypothesized that the identification accuracy would improve with use of the identification key and with observer training, resulting in higher levels of observer confidence and higher levels of agreement among observers. We developed an identification key and tested identification accuracy based on photographs of verified museum specimens. Our results supported predictions for each of these hypotheses. In addition, we validated the method in the field by comparing remote-camera data with live-trapping data. We recommend use of these methods to evaluate error rates and to exclude ambiguous records in camera-trap datasets. We urge that ensuring correct and scientifically defensible species identifications is incumbent on researchers and should be incorporated into the camera-trap workflow.

3.
J Mammal ; 102(5): 1249-1265, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34650347

RESUMEN

Habitat information for small mammals typically consists of anecdotal descriptions or infrequent analyses of habitat use, which often are reported erroneously as signifying habitat preference, requirements, or quality. Habitat preferences can be determined only by analysis of habitat selection, a behavioral process that results in the disproportionate use of one resource over other available resources and occurs in a hierarchical manner across different environmental scales. North American chipmunks (Neotamias and Tamias) are a prime example of the lack of studies on habitat selection for small mammal species. We used the Organ Mountains Colorado chipmunk (N. quadrivittatus australis) as a case study to determine whether previous descriptions of habitat in the literature were upheld in a multiscale habitat selection context. We tracked VHF radiocollared chipmunks and collected habitat information at used and available locations to analyze habitat selection at three scales: second order (i.e., home range), third order (i.e., within home range), and microhabitat scales. Mean home range was 2.55 ha ± 1.55 SD and did not differ between sexes. At the second and third order, N. q. australis avoided a coniferous forest land cover type and favored particular areas of arroyos (gullies) that were relatively steep-sided and greener and contained montane scrub land cover type. At the microhabitat scale, chipmunks selected areas that had greater woody plant diversity, rock ground cover, and ground cover of coarse woody debris. We concluded that habitat selection by N. q. australis fundamentally was different from descriptions of habitat in the literature that described N. quadrivittatus as primarily associated with coniferous forests. We suggest that arroyos, which are unique and rare on the landscape, function as climate refugia for these chipmunks because they create a cool, wet microclimate. Our findings demonstrate the importance of conducting multiscale habitat selection studies for small mammals to ensure that defensible and enduring habitat information is available to support appropriate conservation and management actions.

4.
J Mammal ; 101(4): 1035-1048, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-33033469

RESUMEN

Species distribution models (SDMs) use presence records to determine the relationship between species occurrence and various environmental variables to create predictive maps describing the species' distribution. The Oscura Mountains Colorado chipmunk (Neotamias quadrivittatus oscuraensis) occurs in central New Mexico and is of conservation concern due to its relict distribution and threats to habitat. We previously created an occupancy model for this taxon, but were concerned that the model may not have adequately captured the ecological factors influencing the chipmunk's distribution because of the data hungry nature of occupancy modeling. MaxEnt is another SDM method that is particularly effective at testing large numbers of variables and handling small sample sizes. Our goal was to create a MaxEnt model for the Oscura Mountains Colorado chipmunk and to compare it with our previous occupancy model for this taxon, either to strengthen our original assessment of the relevant ecological factors or identify additional factors that were not captured by our occupancy model. We created MaxEnt models using occurrence records from baited camera traps and opportunistic surveys. We adjusted model complexity using a novel method for tuning both the regularization multiplier and feature class parameters while also performing variable selection. We compared the distribution maps and variables selected by MaxEnt to the results of our occupancy model for this taxon. The MaxEnt and occupancy models selected similar environmental variables and the overall spatial pattern of occurrence was similar for each model. Likelihood of occurrence was positively related to elevation, piñon woodland vegetation type, and topographic variables associated with escarpments. The overall similarities between the MaxEnt and occupancy models increased our confidence of the ecological factors influencing the distribution of the chipmunk. We conclude that MaxEnt offers advantages for predicting the distribution of rare species, which can help inform conservation actions.

5.
PeerJ ; 3: e1138, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26290794

RESUMEN

Hibernation is a key life history feature that can impact many other crucial aspects of a species' biology, such as its survival and reproduction. I examined the timing of hibernation and reproduction in the federally endangered New Mexico meadow jumping mouse (Zapus hudsonius luteus), which occurs across a broad range of latitudes and elevations in the American Southwest. Data from museum specimens and field studies supported predictions for later emergence and shorter active intervals in montane populations relative to lower elevation valley populations. A low-elevation population located at Bosque del Apache National Wildlife Refuge (BANWR) in the Rio Grande valley was most similar to other subspecies of Z. hudsonius: the first emergence date was in mid-May and there was an active interval of 162 days. In montane populations of Z. h. luteus, the date of first emergence was delayed until mid-June and the active interval was reduced to ca 124-135 days, similar to some populations of the western jumping mouse (Z. princeps). Last date of immergence into hibernation occurred at about the same time in all populations (mid to late October). In montane populations pregnant females are known from July to late August and evidence suggests that they have a single litter per year. At BANWR two peaks in reproduction were expected based on similarity of active season to Z. h. preblei. However, only one peak was clearly evident, possibly due to later first reproduction and possible torpor during late summer. At BANWR pregnant females are known from June and July. Due to the short activity season and geographic variation in phenology of key life history events of Z. h. luteus, recommendations are made for the appropriate timing for surveys for this endangered species.

6.
Animals (Basel) ; 3(2): 327-48, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-26487405

RESUMEN

Species distributions are usually inferred from occurrence records. However, these records are prone to errors in spatial precision and reliability. Although influence of spatial errors has been fairly well studied, there is little information on impacts of poor reliability. Reliability of an occurrence record can be influenced by characteristics of the species, conditions during the observation, and observer's knowledge. Some studies have advocated use of anecdotal data, while others have advocated more stringent evidentiary standards such as only accepting records verified by physical evidence, at least for rare or elusive species. Our goal was to evaluate the influence of occurrence records with different reliability on species distribution models (SDMs) of a unique mammal, the white-nosed coati (Nasua narica) in the American Southwest. We compared SDMs developed using maximum entropy analysis of combined bioclimatic and biophysical variables and based on seven subsets of occurrence records that varied in reliability and spatial precision. We found that the predicted distribution of the coati based on datasets that included anecdotal occurrence records were similar to those based on datasets that only included physical evidence. Coati distribution in the American Southwest was predicted to occur in southwestern New Mexico and southeastern Arizona and was defined primarily by evenness of climate and Madrean woodland and chaparral land-cover types. Coati distribution patterns in this region suggest a good model for understanding the biogeographic structure of range margins. We concluded that occurrence datasets that include anecdotal records can be used to infer species distributions, providing such data are used only for easily-identifiable species and based on robust modeling methods such as maximum entropy. Use of a reliability rating system is critical for using anecdotal data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA