Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(R1): R19-R25, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38779769

RESUMEN

Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Procesamiento Postranscripcional del ARN , ARN Mitocondrial , Humanos , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Animales , Transcripción Genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
2.
Hum Mol Genet ; 31(12): 2049-2062, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35024855

RESUMEN

The SLC25A26 gene encodes a mitochondrial inner membrane carrier that transports S-adenosylmethionine (SAM) into the mitochondrial matrix in exchange for S-adenosylhomocysteine (SAH). SAM is the predominant methyl-group donor for most cellular methylation processes, of which SAH is produced as a by-product. Pathogenic, biallelic SLC25A26 variants are a recognized cause of mitochondrial disease in children, with a severe neonatal onset caused by decreased SAM transport activity. Here, we describe two, unrelated adult cases, one of whom presented with recurrent episodes of severe abdominal pain and metabolic decompensation with lactic acidosis. Both patients had exercise intolerance and mitochondrial myopathy associated with biallelic variants in SLC25A26, which led to marked respiratory chain deficiencies and mitochondrial histopathological abnormalities in skeletal muscle that are comparable to those previously described in early-onset cases. We demonstrate using both mouse and fruit fly models that impairment of SAH, rather than SAM, transport across the mitochondrial membrane is likely the cause of this milder, late-onset phenotype. Our findings associate a novel pathomechanism with a known disease-causing protein and highlight the quests of precision medicine in optimizing diagnosis, therapeutic intervention and prognosis.


Asunto(s)
Enfermedades Mitocondriales , S-Adenosilhomocisteína , Animales , Metilación , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo
3.
Mol Cell Proteomics ; 20: 100065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33640490

RESUMEN

Drosophila melanogaster has been a workhorse of genetics and cell biology for more than a century. However, proteomic-based methods have been limited due to the complexity and dynamic range of the fly proteome and the lack of efficient labeling methods. Here, we advanced a chemically defined food source into direct stable-isotope labeling of amino acids in flies (SILAF). It allows for the rapid and cost-efficient generation of a large number of larvae or flies, with full incorporation of lysine-[13C6] after six labeling days. SILAF followed by fractionation and enrichment gave proteomic insights at a depth of 7196 proteins and 8451 phosphorylation sites, which substantiated metabolic regulation on enzymatic level. We applied SILAF to quantify the mitochondrial phosphoproteome of an early-stage leucine-rich PPR motif-containing protein (LRPPRC)-knockdown fly model of mitochondrial disease that almost exclusively affects protein levels of the oxidative phosphorylation (OXPHOS) system. While the mitochondrial compartment was hypo-phosphorylated, two conserved phosphosites on OXPHOS subunits NDUFB10 and NDUFA4 were significantly upregulated upon impaired OXPHOS function. The ease and versatility of the method actuate the fruit fly as an appealing model in proteomic and posttranslational modification studies, and it enlarges potential metabolic applications based on heavy amino acid diets.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfoproteínas/metabolismo , Aminoácidos/metabolismo , Animales , Drosophila melanogaster , Femenino , Marcaje Isotópico , Masculino , Fosforilación , Proteoma
4.
PLoS Genet ; 15(7): e1008240, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31365523

RESUMEN

The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Poliadenilación , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Estabilidad del ARN , ARN sin Sentido/química , ARN sin Sentido/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo
5.
Hum Mutat ; 42(4): 378-384, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502047

RESUMEN

Mutations in structural subunits and assembly factors of complex I of the oxidative phosphorylation system constitute the most common cause of mitochondrial respiratory chain defects. Such mutations can present a wide range of clinical manifestations, varying from mild deficiencies to severe, lethal disorders. We describe a patient presenting intrauterine growth restriction and anemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Whole genome sequencing revealed an intronic biallelic mutation in the NDUFB7 gene (c.113-10C>G) and splicing pattern alterations in NDUFB7 messenger RNA were confirmed by RNA Sequencing. The detected variant resulted in a significant reduction of the NDUFB7 protein and reduced complex I activity. Complementation studies with expression of wild-type NDUFB7 in patient fibroblasts normalized complex I function. Here we report a case with a primary complex I defect due to a homozygous mutation in an intron region of the NDUFB7 gene.


Asunto(s)
Acidosis Láctica , Cardiomiopatía Hipertrófica , Enfermedades Mitocondriales , NADH NADPH Oxidorreductasas/genética , Acidosis Láctica/genética , Cardiomiopatía Hipertrófica/genética , Complejo I de Transporte de Electrón/genética , Humanos , Enfermedades Mitocondriales/genética , Mutación
6.
J Pediatr ; 228: 240-251.e2, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32827528

RESUMEN

OBJECTIVES: To evaluate the clinical symptoms and biochemical findings and establish the genetic etiology in a cohort of pediatric patients with combined deficiencies of the mitochondrial respiratory chain complexes. STUDY DESIGN: Clinical and biochemical data were collected from 55 children. All patients were subjected to sequence analysis of the entire mitochondrial genome, except when the causative mutations had been identified based on the clinical picture. Whole exome sequencing/whole genome sequencing (WES/WGS) was performed in 32 patients. RESULTS: Onset of disease was generally early in life (median age, 6 weeks). The most common symptoms were muscle weakness, hypotonia, and developmental delay/intellectual disability. Nonneurologic symptoms were frequent. Disease causing mutations were found in 20 different nuclear genes, and 7 patients had mutations in mitochondrial DNA. Causative variants were found in 18 of the 32 patients subjected to WES/WGS. Interestingly, many patients had low levels of coenzyme Q10 in muscle, irrespective of genetic cause. CONCLUSIONS: Children with combined enzyme defects display a diversity of clinical symptoms with varying age of presentation. We established the genetic diagnosis in 35 of the 55 patients (64%). The high diagnostic yield was achieved by the introduction of massive parallel sequencing, which also revealed novel genes and enabled elucidation of new disease mechanisms.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Metabólicas/genética , Enfermedades Mitocondriales/genética , Mutación , Ubiquinona/análogos & derivados , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Humanos , Lactante , Recién Nacido , Enfermedades Metabólicas/enzimología , Enfermedades Mitocondriales/enzimología , Ubiquinona/sangre , Secuenciación del Exoma , Adulto Joven
7.
Cell Mol Life Sci ; 77(13): 2483-2496, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31912194

RESUMEN

Understanding the mechanisms behind neurodifferentiation in adults will be an important milestone in our quest to identify treatment strategies for cognitive disorders observed during our natural ageing or disease. It is now clear that the maturation of neural stem cells to neurones, fully integrated into neuronal circuits requires a complete remodelling of cellular metabolism, including switching the cellular energy source. Mitochondria are central for this transition and are increasingly seen as the regulatory hub in defining neural stem cell fate and neurodevelopment. This review explores our current knowledge of metabolism during adult neurodifferentiation.


Asunto(s)
Encéfalo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Adulto , Animales , Humanos , Metabolismo de los Lípidos , Mitocondrias/ultraestructura , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
8.
Nucleic Acids Res ; 47(17): 9386-9399, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31396629

RESUMEN

In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain-an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , ARN Mitocondrial/genética , Proteínas de Unión al ARN/genética , Animales , Células HEK293 , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Ribosomas Mitocondriales/metabolismo , ARN Mensajero/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/fisiología
9.
Hum Mol Genet ; 26(13): 2515-2525, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430993

RESUMEN

Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early-onset multi-systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well-documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , ADN Polimerasa gamma , Replicación del ADN/genética , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Femenino , Humanos , Lactante , Mitocondrias/genética , Mutación/genética , Oftalmoplejía Externa Progresiva Crónica/enzimología , Linaje , Fenotipo
10.
Am J Hum Genet ; 99(3): 735-743, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545679

RESUMEN

SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.


Asunto(s)
Ataxia/genética , Autofagia/genética , Distonía/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Proteína Sequestosoma-1/deficiencia , Parálisis Supranuclear Progresiva/genética , Adolescente , Adulto , Edad de Inicio , Ataxia/complicaciones , Autofagosomas/metabolismo , Autofagosomas/patología , Niño , Trastornos del Conocimiento/genética , Disartria/complicaciones , Disartria/genética , Distonía/complicaciones , Femenino , Fibroblastos/metabolismo , Marcha/genética , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Trastornos del Movimiento/complicaciones , Trastornos del Movimiento/genética , Enfermedades Neurodegenerativas/complicaciones , Linaje , Fenotipo , ARN Mensajero/análisis , Proteína Sequestosoma-1/genética , Parálisis Supranuclear Progresiva/complicaciones , Adulto Joven
11.
Nature ; 501(7467): 412-5, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23965628

RESUMEN

Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.


Asunto(s)
Envejecimiento/genética , Encéfalo/anomalías , Encéfalo/metabolismo , ADN Mitocondrial/genética , Herencia Extracromosómica/genética , Mitocondrias/genética , Mutación/genética , Envejecimiento/patología , Alelos , Animales , Encéfalo/crecimiento & desarrollo , Núcleo Celular/genética , Femenino , Genoma/genética , Heterocigoto , Tamaño de la Camada , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis/genética , Fenotipo , Reproducción/genética , Reproducción/fisiología , Procesos Estocásticos
12.
PLoS Genet ; 12(5): e1006028, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27176048

RESUMEN

Polyadenylation has well characterised roles in RNA turnover and translation in a variety of biological systems. While polyadenylation on mitochondrial transcripts has been suggested to be a two-step process required to complete translational stop codons, its involvement in mitochondrial RNA turnover is less well understood. We studied knockdown and knockout models of the mitochondrial poly(A) polymerase (MTPAP) in Drosophila melanogaster and demonstrate that polyadenylation of mitochondrial mRNAs is exclusively performed by MTPAP. Further, our results show that mitochondrial polyadenylation does not regulate mRNA stability but protects the 3' terminal integrity, and that despite a lack of functioning 3' ends, these trimmed transcripts are translated, suggesting that polyadenylation is not required for mitochondrial translation. Additionally, loss of MTPAP leads to reduced steady-state levels and disturbed maturation of tRNACys, indicating that polyadenylation in mitochondria might be important for the stability and maturation of specific tRNAs.


Asunto(s)
Drosophila melanogaster/genética , Poliadenilación/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Animales , Codón de Terminación , Técnicas de Silenciamiento del Gen , Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , ARN Mitocondrial , ARN de Transferencia/genética
13.
Am J Hum Genet ; 97(5): 761-8, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26522469

RESUMEN

S-adenosylmethionine (SAM) is the predominant methyl group donor and has a large spectrum of target substrates. As such, it is essential for nearly all biological methylation reactions. SAM is synthesized by methionine adenosyltransferase from methionine and ATP in the cytoplasm and subsequently distributed throughout the different cellular compartments, including mitochondria, where methylation is mostly required for nucleic-acid modifications and respiratory-chain function. We report a syndrome in three families affected by reduced intra-mitochondrial methylation caused by recessive mutations in the gene encoding the only known mitochondrial SAM transporter, SLC25A26. Clinical findings ranged from neonatal mortality resulting from respiratory insufficiency and hydrops to childhood acute episodes of cardiopulmonary failure and slowly progressive muscle weakness. We show that SLC25A26 mutations cause various mitochondrial defects, including those affecting RNA stability, protein modification, mitochondrial translation, and the biosynthesis of CoQ10 and lipoic acid.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Proteínas de Unión al Calcio/genética , Metilación de ADN , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Debilidad Muscular/genética , Mutación/genética , S-Adenosilmetionina/metabolismo , Secuencia de Aminoácidos , Preescolar , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Debilidad Muscular/patología , Linaje , Pronóstico , Estabilidad del ARN , Homología de Secuencia de Aminoácido , Ácido Tióctico/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
14.
Hum Mol Genet ; 24(23): 6580-7, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26374844

RESUMEN

Muscle weakness and exercise intolerance are hallmark symptoms in mitochondrial disorders. Little is known about the mechanisms leading to impaired skeletal muscle function and ultimately muscle weakness in these patients. In a mouse model of lethal mitochondrial myopathy, the muscle-specific Tfam knock-out (KO) mouse, we previously demonstrated an excessive mitochondrial Ca(2+) uptake in isolated muscle fibers that could be inhibited by the cyclophilin D (CypD) inhibitor, cyclosporine A (CsA). Here we show that the Tfam KO mice have increased CypD levels, and we demonstrate that this increase is a common feature in patients with mitochondrial myopathy. We tested the effect of CsA treatment on Tfam KO mice during the transition from a mild to terminal myopathy. CsA treatment counteracted the development of muscle weakness and improved muscle fiber Ca(2+) handling. Importantly, CsA treatment prolonged the lifespan of these muscle-specific Tfam KO mice. These results demonstrate that CsA treatment is an efficient therapeutic strategy to slow the development of severe mitochondrial myopathy.


Asunto(s)
Ciclofilinas/antagonistas & inhibidores , Ciclosporina/uso terapéutico , Mitocondrias/metabolismo , Miopatías Mitocondriales/tratamiento farmacológico , Músculo Esquelético/metabolismo , Animales , Calcio/metabolismo , Peptidil-Prolil Isomerasa F , Ciclofilinas/efectos de los fármacos , Ciclofilinas/genética , ADN Mitocondrial , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Músculo Esquelético/efectos de los fármacos , Mutación
15.
Am J Hum Genet ; 95(3): 285-93, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25152457

RESUMEN

Neu-Laxova syndrome (NLS) is a rare autosomal-recessive disorder characterized by a recognizable pattern of severe malformations leading to prenatal or early postnatal lethality. Homozygous mutations in PHGDH, a gene involved in the first and limiting step in L-serine biosynthesis, were recently identified as the cause of the disease in three families. By studying a cohort of 12 unrelated families affected by NLS, we provide evidence that NLS is genetically heterogeneous and can be caused by mutations in all three genes encoding enzymes of the L-serine biosynthesis pathway. Consistent with recently reported findings, we could identify PHGDH missense mutations in three unrelated families of our cohort. Furthermore, we mapped an overlapping homozygous chromosome 9 region containing PSAT1 in four consanguineous families. This gene encodes phosphoserine aminotransferase, the enzyme for the second step in L-serine biosynthesis. We identified six families with three different missense and frameshift PSAT1 mutations fully segregating with the disease. In another family, we discovered a homozygous frameshift mutation in PSPH, the gene encoding phosphoserine phosphatase, which catalyzes the last step of L-serine biosynthesis. Interestingly, all three identified genes have been previously implicated in serine-deficiency disorders, characterized by variable neurological manifestations. Our findings expand our understanding of NLS as a disorder of the L-serine biosynthesis pathway and suggest that NLS represents the severe end of serine-deficiency disorders, demonstrating that certain complex syndromes characterized by early lethality could indeed be the extreme end of the phenotypic spectrum of already known disorders.


Asunto(s)
Anomalías Múltiples/genética , Encefalopatías/genética , Retardo del Crecimiento Fetal/genética , Ictiosis/genética , Deformidades Congénitas de las Extremidades/genética , Microcefalia/genética , Mutación/genética , Fosfoglicerato-Deshidrogenasa/genética , Monoéster Fosfórico Hidrolasas/genética , Serina/biosíntesis , Transaminasas/genética , Anomalías Múltiples/metabolismo , Secuencia de Aminoácidos , Encefalopatías/metabolismo , Consanguinidad , Familia , Femenino , Retardo del Crecimiento Fetal/metabolismo , Homocigoto , Humanos , Ictiosis/metabolismo , Deformidades Congénitas de las Extremidades/metabolismo , Masculino , Microcefalia/metabolismo , Datos de Secuencia Molecular , Fosfoglicerato-Deshidrogenasa/química , Fosfoglicerato-Deshidrogenasa/deficiencia , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/deficiencia , Conformación Proteica , Homología de Secuencia de Aminoácido , Serina/química , Transaminasas/química , Transaminasas/deficiencia
16.
Mol Genet Metab ; 121(3): 216-223, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28552678

RESUMEN

Coenzyme Q10 (CoQ10) is an essential cofactor of the mitochondrial oxidative phosphorylation (OXPHOS) system and its deficiency has important implications for several inherited metabolic disorders of childhood. The biosynthesis of CoQ10 is a complicated process, which involves at least 12 different enzymes. One of the metabolic intermediates that are formed during CoQ10 biosynthesis is the molecule 6-demethoxyubiquinone (6-DMQ). This CoQ precursor is processed at the level of COQ7 and COQ9. We selected this metabolite as a marker substance for metabolic analysis of cell lines with inherited genetic defects (COQ2, COQ4, COQ7 and COQ9) or siRNA knockdown in CoQ biosynthesis enzymes using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). In COQ4, COQ7 and COQ9 deficient cell lines, we detected significantly elevated levels of 6-DMQ. This suggests a functional interplay of these proteins. However, additional siRNA studies demonstrated that elevated 6-DMQ levels are not an exclusive marker of the COQ7/COQ9 enzymatic step of CoQ10 biosynthesis but constitute a more general phenomenon that occurs in disorders impairing the function or stability of the CoQ-synthome. To further investigate the interdependence of CoQ10 biosynthesis enzyme expression, we performed immunoblotting in various cell lines with CoQ10 deficiency, indicating that COQ4, COQ7 and COQ9 protein expression levels are highly regulated depending on the underlying defect. Supplementation of cell lines with synthetic CoQ precursor compounds demonstrated beneficial effects of 2,4-dihydroxybenzoic acid in COQ7 and COQ9 deficiency. Moreover, vanillic acid selectively stimulated CoQ10 biosynthesis and improved cell viability in COQ9 deficiency. However, compounds tested in this study failed to rescue COQ4 deficiency.


Asunto(s)
Ataxia/metabolismo , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Hidroxibenzoatos/farmacología , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Espectrometría de Masas en Tándem , Ubiquinona/biosíntesis , Ubiquinona/metabolismo , Ácido Vanílico/farmacología
17.
Nucleic Acids Res ; 43(15): 7398-413, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26152302

RESUMEN

Mitochondrial gene expression is largely regulated by post-transcriptional mechanisms that control the amount and translation of each mitochondrial mRNA. Despite its importance for mitochondrial function, the mechanisms and proteins involved in mRNA turnover are still not fully characterized. Studies in yeast and human cell lines have indicated that the mitochondrial helicase SUV3, together with the polynucleotide phosphorylase, PNPase, composes the mitochondrial degradosome. To further investigate the in vivo function of SUV3 we disrupted the homolog of SUV3 in Drosophila melanogaster (Dm). Loss of dmsuv3 led to the accumulation of mitochondrial mRNAs, without increasing rRNA levels, de novo transcription or decay intermediates. Furthermore, we observed a severe decrease in mitochondrial tRNAs accompanied by an accumulation of unprocessed precursor transcripts. These processing defects lead to reduced mitochondrial translation and a severe respiratory chain complex deficiency, resulting in a pupal lethal phenotype. In summary, our results propose that SUV3 is predominantly required for the processing of mitochondrial polycistronic transcripts in metazoan and that this function is independent of PNPase.


Asunto(s)
Proteínas de Drosophila/fisiología , Proteínas Mitocondriales/fisiología , ARN Helicasas/fisiología , Procesamiento Postranscripcional del ARN , ARN/metabolismo , Animales , Línea Celular , ARN Helicasas DEAD-box/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Transporte de Electrón , Genes Letales , Células HeLa , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Biosíntesis de Proteínas , ARN Helicasas/genética , ARN Helicasas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo
18.
Nucleic Acids Res ; 43(19): 9262-75, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26253742

RESUMEN

The majority of mitochondrial DNA replication events are terminated prematurely. The nascent DNA remains stably associated with the template, forming a triple-stranded displacement loop (D-loop) structure. However, the function of the D-loop region of the mitochondrial genome remains poorly understood. Using a comparative genomics approach we here identify two closely related 15 nt sequence motifs of the D-loop, strongly conserved among vertebrates. One motif is at the D-loop 5'-end and is part of the conserved sequence block 1 (CSB1). The other motif, here denoted coreTAS, is at the D-loop 3'-end. Both these sequences may prevent transcription across the D-loop region, since light and heavy strand transcription is terminated at CSB1 and coreTAS, respectively. Interestingly, the replication of the nascent D-loop strand, occurring in a direction opposite to that of heavy strand transcription, is also terminated at coreTAS, suggesting that coreTAS is involved in termination of both transcription and replication. Finally, we demonstrate that the loading of the helicase TWINKLE at coreTAS is reversible, implying that this site is a crucial component of a switch between D-loop formation and full-length mitochondrial DNA replication.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/química , Proteínas Mitocondriales/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Células HeLa , Humanos , Secuencias Invertidas Repetidas , Ratones , Motivos de Nucleótidos , ARN Citoplasmático Pequeño/química , ARN Citoplasmático Pequeño/genética , Secuencias Reguladoras de Ácidos Nucleicos , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Terminación de la Transcripción Genética , Vertebrados/genética
19.
J Med Genet ; 52(11): 779-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26084283

RESUMEN

BACKGROUND: Coenzyme Q is an essential mitochondrial electron carrier, redox cofactor and a potent antioxidant in the majority of cellular membranes. Coenzyme Q deficiency has been associated with a range of metabolic diseases, as well as with some drug treatments and ageing. METHODS: We used whole exome sequencing (WES) to investigate patients with inherited metabolic diseases and applied a novel ultra-pressure liquid chromatography-mass spectrometry approach to measure coenzyme Q in patient samples. RESULTS: We identified a homozygous missense mutation in the COQ7 gene in a patient with complex mitochondrial deficiency, resulting in severely reduced coenzyme Q levels We demonstrate that the coenzyme Q analogue 2,4-dihydroxybensoic acid (2,4DHB) was able to specifically bypass the COQ7 deficiency, increase cellular coenzyme Q levels and rescue the biochemical defect in patient fibroblasts. CONCLUSION: We report the first patient with primary coenzyme Q deficiency due to a homozygous COQ7 mutation and a potentially beneficial treatment using 2,4DHB.


Asunto(s)
Ataxia/genética , Hidroxibenzoatos/uso terapéutico , Enfermedades Mitocondriales/genética , Debilidad Muscular/genética , Mutación Missense , Ubiquinona/deficiencia , Secuencia de Aminoácidos , Ataxia/diagnóstico , Ataxia/tratamiento farmacológico , Niño , Preescolar , Cromatografía Liquida , Análisis Mutacional de ADN , Exoma , Homocigoto , Humanos , Recién Nacido , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/tratamiento farmacológico , Datos de Secuencia Molecular , Debilidad Muscular/diagnóstico , Debilidad Muscular/tratamiento farmacológico , Alineación de Secuencia , Espectrometría de Masas en Tándem , Ubiquinona/genética
20.
Nucleic Acids Res ; 42(2): 1111-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24163253

RESUMEN

Variants of mitochondrial DNA (mtDNA) are commonly used as markers to track human evolution because of the high sequence divergence and exclusive maternal inheritance. It is assumed that the inheritance is clonal, i.e. that mtDNA is transmitted between generations without germline recombination. In contrast to this assumption, a number of studies have reported the presence of recombinant mtDNA molecules in cell lines and animal tissues, including humans. If germline recombination of mtDNA is frequent, it would strongly impact phylogenetic and population studies by altering estimates of coalescent time and branch lengths in phylogenetic trees. Unfortunately, this whole area is controversial and the experimental approaches have been widely criticized as they often depend on polymerase chain reaction (PCR) amplification of mtDNA and/or involve studies of transformed cell lines. In this study, we used an in vivo mouse model that has had germline heteroplasmy for a defined set of mtDNA mutations for more than 50 generations. To assess recombination, we adapted and validated a method based on cloning of single mtDNA molecules in the λ phage, without prior PCR amplification, followed by subsequent mutation analysis. We screened 2922 mtDNA molecules and found no germline recombination after transmission of mtDNA under genetically and evolutionary relevant conditions in mammals.


Asunto(s)
ADN Mitocondrial/química , Recombinación Genética , Animales , Artefactos , Bacteriófago lambda/genética , Clonación Molecular , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA