Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(12): 2839-2854, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748517

RESUMEN

Loss of muscle mass and function induced by sepsis contributes to physical inactivity and disability in intensive care unit patients. Limiting skeletal muscle deconditioning may thus be helpful in reducing the long-term effect of muscle wasting in patients. We tested the hypothesis that invalidation of the myostatin gene, which encodes a powerful negative regulator of skeletal muscle mass, could prevent or attenuate skeletal muscle wasting and improve survival of septic mice. Sepsis was induced by caecal ligature and puncture (CLP) in 13-week-old C57BL/6J wild-type and myostatin knock-out male mice. Survival rates were similar in wild-type and myostatin knock-out mice seven days after CLP. Loss in muscle mass was also similar in wild-type and myostatin knock-out mice 4 and 7 days after CLP. The loss in muscle mass was molecularly supported by an increase in the transcript level of E3-ubiquitin ligases and autophagy-lysosome markers. This transcriptional response was blunted in myostatin knock-out mice. No change was observed in the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway. Muscle strength was similarly decreased in wild-type and myostatin knock-out mice 4 and 7 days after CLP. This was associated with a modified expression of genes involved in ion homeostasis and excitation-contraction coupling, suggesting that a long-term functional recovery following experimental sepsis may be impaired by a dysregulated expression of molecular determinants of ion homeostasis and excitation-contraction coupling. In conclusion, myostatin gene invalidation does not provide any benefit in preventing skeletal muscle mass loss and strength in response to experimental sepsis. KEY POINTS: Survival rates are similar in wild-type and myostatin knock-out mice seven days after the induction of sepsis. Loss in muscle mass and muscle strength are similar in wild-type and myostatin knock-out mice 4 and 7 days after the induction of an experimental sepsis. Despite evidence of a transcriptional regulation, the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway remained unchanged. RT-qPCR analysis of autophagy-lysosome pathway markers indicates that activity of the pathway may be altered by experimental sepsis in wild-type and myostatin knock-out mice. Experimental sepsis induces greater variations in the mRNA levels of wild-type mice than those of myostatin knock-out mice, without providing any significant catabolic resistance or functional benefits.


Asunto(s)
Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético , Miostatina , Sepsis , Animales , Miostatina/genética , Miostatina/metabolismo , Sepsis/genética , Sepsis/metabolismo , Músculo Esquelético/metabolismo , Masculino , Ratones , Autofagia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fuerza Muscular , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-34748935

RESUMEN

Skeletal muscle mitochondria of the African pygmy mouse Mus mattheyi exhibit markedly reduced oxygen consumption and ATP synthesis rates but a higher mitochondrial efficiency than what would be expected from allometric trends. In the present study, we assessed whether such reduction of mitochondrial activity in M. mattheyi can limit the oxidative stress associated with an increased generation of mitochondrial reactive oxygen species. We conducted a comparative study of mitochondrial oxygen consumption, H2O2 release, and electron leak (%H2O2/O) in skeletal muscle mitochondria isolated from the extremely small African pygmy mouse (M. mattheyi, ~5 g) and Mus musculus, which is a larger Mus species (~25 g). Mitochondria were energized with pyruvate, malate, and succinate, after which fluxes were measured at different steady-state rates of oxidative phosphorylation. Overall, M. mattheyi exhibited lower oxidative activity and higher electron leak than M. musculus, while the H2O2 release did not differ significantly between these two Mus species. We further found that the high coupling efficiency of skeletal muscle mitochondria from M. mattheyi was associated with high electron leak. Nevertheless, data also show that, despite the higher electron leak, the lower mitochondrial respiratory capacity of M. mattheyi limits the cost of a net increase in H2O2 release, which is lower than that expected for a mammals of this size.


Asunto(s)
Mitocondrias Musculares/metabolismo , Adenosina Difosfato/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Estrés Oxidativo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie
3.
Breast Cancer Res Treat ; 188(3): 601-613, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34013451

RESUMEN

PURPOSE: Sarcopenia has been identified as an important prognostic factor for patients with cancer. This study aimed at exploring the potential associations between a 6-month physical activity intervention and muscle characteristics, sarcopenia, oxidative stress and toxicities in patients with metastatic breast cancer. METHODS: Women newly diagnosed with metastatic breast cancer (N = 49) participated in an unsupervised, personalized, 6-month physical activity intervention with activity tracker. Computerized tomography images at the third lumbar vertebra were analysed at baseline, three months and six months to assess sarcopenia (muscle mass index < 40 cm2/m2) and muscle quality (poor if muscle attenuation < 37.8 Hounsfield Units). Oxidative markers included plasma antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase activities), prooxidant enzymes (NADPH oxidase and myeloperoxidase activities) and oxidative stress damage markers (advanced oxidation protein products, malondialdehyde (MDA) and DNA oxidation. RESULTS: At baseline 53% (mean age 55 years (SD 10.41)) were sarcopenic and 75% had poor muscle quality. Muscle cross sectional area, skeletal muscle radiodensity, lean body mass remained constant over the six months (p = 0.75, p = 0.07 and p = 0.75 respectively), but differed significantly between sarcopenic and non-sarcopenic patients at baseline and 6-months. Sarcopenic patients at baseline were more likely to have an increase of MDA (p = 0.02) at 6 months. Being sarcopenic during at least one moment during the 6-month study was associated with a higher risk of developing severe toxicities (grade > 2) (p = 0.02). CONCLUSIONS: This study suggests potential benefits of physical activity for maintenance of muscle mass. Sarcopenia can alter many parameters and disturb the pro and antioxidant balance.


Asunto(s)
Neoplasias de la Mama , Sarcopenia , Biomarcadores , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/patología , Ejercicio Físico , Estudios de Factibilidad , Femenino , Humanos , Persona de Mediana Edad , Músculo Esquelético/patología , Estrés Oxidativo , Sarcopenia/diagnóstico , Sarcopenia/etiología , Sarcopenia/patología
4.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769492

RESUMEN

Muscle deconditioning is a major consequence of a wide range of conditions from spaceflight to a sedentary lifestyle, and occurs as a result of muscle inactivity, leading to a rapid decrease in muscle strength, mass, and oxidative capacity. The early changes that appear in the first days of inactivity must be studied to determine effective methods for the prevention of muscle deconditioning. To evaluate the mechanisms of muscle early changes and the vascular effect of a thigh cuff, a five-day dry immersion (DI) experiment was conducted by the French Space Agency at the MEDES Space Clinic (Rangueil, Toulouse). Eighteen healthy males were recruited and divided into a control group and a thigh cuff group, who wore a thigh cuff at 30 mmHg. All participants underwent five days of DI. Prior to and at the end of the DI, the lower limb maximal strength was measured and muscle biopsies were collected from the vastus lateralis muscle. Five days of DI resulted in muscle deconditioning in both groups. The maximal voluntary isometric contraction of knee extension decreased significantly. The muscle fiber cross-sectional area decreased significantly by 21.8%, and the protein balance seems to be impaired, as shown by the reduced activation of the mTOR pathway. Measurements of skinned muscle fibers supported these results and potential changes in oxidative capacity were highlighted by a decrease in PGC1-α levels. The use of the thigh cuff did not prevent muscle deconditioning or impact muscle function. These results suggest that the major effects of muscle deconditioning occur during the first few days of inactivity, and countermeasures against muscle deconditioning should target this time period. These results are also relevant for the understanding of muscle weakness induced by muscle diseases, aging, and patients in intensive care.


Asunto(s)
Músculo Esquelético/patología , Atrofia Muscular/patología , Vuelo Espacial/métodos , Muslo/fisiopatología , Adulto , Estudios de Casos y Controles , Humanos , Contracción Isométrica , Masculino , Fuerza Muscular , Restricción Física , Conducta Sedentaria
5.
BMC Cancer ; 20(1): 622, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620149

RESUMEN

BACKGROUND: Patients with a metastatic breast cancer suffer from a deteriorated health-related quality of life and numerous symptoms such as pain, severe fatigue and a decrease of their physical fitness. As the feasibility of a physical activity program has been demonstrated in this population, ABLE02 aims to assess the efficacy of a 6 month-physical activity program using connected devices to improve health-related quality of life and to reduce fatigue in women with metastatic breast cancer. METHODS: ABLE02 is a prospective, national, multicenter, randomized, controlled and open-label study. A total of 244 patients with a metastatic breast cancer, with at least one positive hormone receptor and a first-line chemotherapy planned, will be randomly assigned (1:1 ratio) to: (i) the intervention arm to receive physical activity recommendations, an activity tracker to wear 24 h a day during the whole intervention (6 months) with at least three weekly walking sessions and quizzes each week on physical activity and nutrition (ii) the control arm to receive physical activity recommendations only. Health-related quality of life will be assessed every 6 weeks and main assessments will be conducted at baseline, M3, M6, M12 and M18 to evaluate the clinical, physical, biological and psychological parameters and survival of participants. All questionnaires will be completed on a dedicated application. DISCUSSION: An activity program based on a smartphone application linked to an activity tracker may help to improve quality of life and reduce fatigue of patients with a metastatic breast cancer. The growth of e-health offers the opportunity to get real-time data as well as improving patient empowerment in order to change long-term behaviors. TRIAL REGISTRATION: NCT number: NCT04354233 .


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/terapia , Terapia por Ejercicio/métodos , Fatiga/rehabilitación , Calidad de Vida , Adulto , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Terapia por Ejercicio/instrumentación , Fatiga/etiología , Fatiga/psicología , Femenino , Monitores de Ejercicio , Humanos , Persona de Mediana Edad , Aplicaciones Móviles , Estudios Multicéntricos como Asunto , Supervivencia sin Progresión , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Teléfono Inteligente , Encuestas y Cuestionarios/estadística & datos numéricos
6.
BMC Biol ; 16(1): 65, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29895328

RESUMEN

BACKGROUND: Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses. RESULTS: Unexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O2 and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise. CONCLUSIONS: Therefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson's disease.


Asunto(s)
Metabolismo Energético/genética , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/fisiología , Adaptación Fisiológica/genética , Animales , Hipoxia de la Célula , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Atrofia Muscular/genética , Transducción de Señal , Factores de Transcripción/genética
7.
Am J Physiol Cell Physiol ; 312(3): C209-C221, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003225

RESUMEN

Over the last several years, converging lines of evidence have indicated that miR-206 plays a pivotal role in promoting muscle differentiation and regeneration, thereby potentially impacting positively on the progression of neuromuscular disorders, including Duchenne muscular dystrophy (DMD). Despite several studies showing the regulatory function of miR-206 on target mRNAs in skeletal muscle cells, the effects of overexpression of miR-206 in dystrophic muscles remain to be established. Here, we found that miR-206 overexpression in mdx mouse muscles simultaneously targets multiple mRNAs and proteins implicated in satellite cell differentiation, muscle regeneration, and at the neuromuscular junction. Overexpression of miR-206 also increased the levels of several muscle-specific mRNAs/proteins, while enhancing utrophin A expression at the sarcolemma. Finally, we also observed that the increased expression of miR-206 in dystrophin-deficient mouse muscle decreased the production of proinflammatory cytokines and infiltration of macrophages. Taken together, our results show that miR-206 acts as a pleiotropic regulator that targets multiple key mRNAs and proteins expected to provide beneficial adaptations in dystrophic muscle, thus highlighting its therapeutic potential for DMD.


Asunto(s)
Adaptación Fisiológica , Citocinas/metabolismo , Macrófagos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Regulación de la Expresión Génica , Macrófagos/patología , Masculino , Ratones , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Unión Proteica , Distribución Tisular
8.
Stroke ; 46(6): 1673-80, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25953371

RESUMEN

BACKGROUND AND PURPOSE: Loss of muscle mass and function is a severe complication in patients with stroke that contributes to promoting physical inactivity and disability. The deleterious consequences of skeletal muscle mass loss underline the necessity to identity the molecular mechanisms involved in skeletal muscle atrophy after cerebral ischemia. METHODS: Transient focal cerebral ischemia (60 minutes) was induced by occlusion of the right middle cerebral artery in C57BL/6J male mice. Skeletal muscles were removed 3 days later and analyzed for the regulation of critical determinants of muscle mass homeostasis (Akt/mammalian target of rapamycin pathway, myostatin-Smad2/3 and bone morphogenetic protein-Smad1/5/8 signaling pathways, ubiquitin-proteasome and autophagy-lysosome proteolytic pathways). RESULTS: Cerebral ischemia induced severe sensorimotor deficits associated with muscle mass loss of the paretic limbs. Mechanistically, cerebral ischemia repressed Akt/mammalian target of rapamycin pathway and increased expression of key players of ubiquitin-proteasome pathway (MuRF1 [muscle RING finger-1], MAFbx [muscle atrophy F-box], Musa1 [muscle ubiquitin ligase of SCF complex in atrophy-1]), together with a marked increase in myostatin expression, in both paretic and nonparetic skeletal muscles. The Smad1/5/8 pathway was also activated. CONCLUSIONS: Our data fit with a model in which a repression of Akt/mammalian target of rapamycin pathway and an increase in the expression of key players of ubiquitin-proteasome pathway are critically involved in skeletal muscle atrophy after cerebral ischemia. Cerebral ischemia also caused an activation of bone morphogenetic protein-Smad1/5/8 signaling pathway, suggesting that compensatory mechanisms are also concomitantly activated to limit the extent of skeletal muscle atrophy.


Asunto(s)
Isquemia Encefálica/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transducción de Señal , Animales , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología
9.
Traffic ; 13(6): 869-79, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22369075

RESUMEN

Dynamin 2 (Dnm2) is involved in endocytosis and intracellular membrane trafficking through its function in vesicle formation from distinct membrane compartments. Heterozygous (HTZ) mutations in the DNM2 gene cause dominant centronuclear myopathy or Charcot-Marie-Tooth neuropathy. We generated a knock-in Dnm2R465W mouse model expressing the most frequent human mutation and recently reported that HTZ mice progressively developed a myopathy. We investigated here the cause of neonatal lethality occurring in homozygous (HMZ) mice. We show that HMZ mice present at birth with a reduced body weight, hypoglycemia, increased liver glycogen content and hepatomegaly, in agreement with a defect in neonatal autophagy. In vitro studies performed in HMZ embryonic fibroblasts point out to a decrease in the autophagy flux prior to degradation at the autolysosome. We show that starved HMZ cells have a higher number of immature autophagy-related structures probably due to a defect of acidification. Our results highlight the role of Dnm2 in the cross talk between endosomal and autophagic pathways and evidence a new role of Dnm2-dependent membrane trafficking in autophagy which may be relevant in DNM2-related human diseases.


Asunto(s)
Autofagia , Dinamina II/genética , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Animales , Modelos Animales de Enfermedad , Dinamina II/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Genotipo , Glucógeno/metabolismo , Homocigoto , Hígado/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Fracciones Subcelulares , Factores de Tiempo
10.
J Cachexia Sarcopenia Muscle ; 14(3): 1150-1167, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36864755

RESUMEN

Cancer cachexia is a systemic hypoanabolic and catabolic syndrome that diminishes the quality of life of cancer patients, decreases the efficiency of therapeutic strategies and ultimately contributes to decrease their lifespan. The depletion of skeletal muscle compartment, which represents the primary site of protein loss during cancer cachexia, is of very poor prognostic in cancer patients. In this review, we provide an extensive and comparative analysis of the molecular mechanisms involved in the regulation of skeletal muscle mass in human cachectic cancer patients and in animal models of cancer cachexia. We summarize data from preclinical and clinical studies investigating how the protein turnover is regulated in cachectic skeletal muscle and question to what extent the transcriptional and translational capacities, as well as the proteolytic capacity (ubiquitin-proteasome system, autophagy-lysosome system and calpains) of skeletal muscle are involved in the cachectic syndrome in human and animals. We also wonder how regulatory mechanisms such as insulin/IGF1-AKT-mTOR pathway, endoplasmic reticulum stress and unfolded protein response, oxidative stress, inflammation (cytokines and downstream IL1ß/TNFα-NF-κB and IL6-JAK-STAT3 pathways), TGF-ß signalling pathways (myostatin/activin A-SMAD2/3 and BMP-SMAD1/5/8 pathways), as well as glucocorticoid signalling, modulate skeletal muscle proteostasis in cachectic cancer patients and animals. Finally, a brief description of the effects of various therapeutic strategies in preclinical models is also provided. Differences in the molecular and biochemical responses of skeletal muscle to cancer cachexia between human and animals (protein turnover rates, regulation of ubiquitin-proteasome system and myostatin/activin A-SMAD2/3 signalling pathways) are highlighted and discussed. Identifying the various and intertwined mechanisms that are deregulated during cancer cachexia and understanding why they are decontrolled will provide therapeutic targets for the treatment of skeletal muscle wasting in cancer patients.


Asunto(s)
Caquexia , Neoplasias , Animales , Humanos , Caquexia/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Miostatina/metabolismo , Calidad de Vida , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Análisis de Datos , Ubiquitinas/metabolismo , Ubiquitinas/farmacología , Ubiquitinas/uso terapéutico
11.
Ann Phys Rehabil Med ; 66(2): 101650, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35240326

RESUMEN

BACKGROUND: Non-specific low back pain (LBP) is the leading cause of years lived with disability worldwide. Physical activity is an integral part of LBP treatment. OBJECTIVE: To critically review available evidence regarding the efficacy of physical activity for people with LBP. METHODS: Up to date critical narrative review of the efficacy of physical activity for the managment LBP. The process of article selection was unsystematic; articles were selected based on authors' expertise, self-knowledge and reflective practice. RESULTS: Therapeutic physical activity for LBP includes a wide range of non-specific and specific activities. The efficacy of physical activity on pain and activity limitations has been widely assessed. In acute and subacute LBP, exercise did not reduce pain compared to no exercise. In chronic low back pain (CLBP), exercise reduced pain at the earliest follow-up compared with no exercise. In a recent systematic review, exercise improved function both at the end of treatment and in the long-term compared with usual care. Exercice also reduced work disability in the long-term. We were unable to establish a clear hierarchy between different exercise modalities. Multidisciplinary functional programs consistently improved pain and function in the short- and long-term compared with usual care and physiotherapy and improved the long-term likelihood of returning to work compared to non-multidisciplinary programs. CONCLUSION: Physical activity of all types is an effective treatment for CLBP.


Asunto(s)
Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/terapia , Ejercicio Físico , Modalidades de Fisioterapia , Resultado del Tratamiento , Dimensión del Dolor
12.
J Cachexia Sarcopenia Muscle ; 13(3): 1686-1703, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35277933

RESUMEN

BACKGROUND: Cancer patients at advanced stages experience a severe depletion of skeletal muscle compartment together with a decrease in muscle function, known as cancer cachexia. Cachexia contributes to reducing quality of life, treatment efficiency, and lifespan of cancer patients. However, the systemic nature of the syndrome is poorly documented. Here, we hypothesize that glucocorticoids would be important systemic mediators of cancer cachexia. METHODS: To explore the role of glucocorticoids during cancer cachexia, biomolecular analyses were performed on several tissues (adrenal glands, blood, hypothalamus, liver, and skeletal muscle) collected from ApcMin/+ male mice, a mouse model of intestine and colon cancer, aged of 13 and 23 weeks, and compared with wild type age-matched C57BL/6J littermates. RESULTS: Twenty-three-week-old Apc mice recapitulated important features of cancer cachexia including body weight loss (-16%, P < 0.0001), muscle atrophy (gastrocnemius muscle: -53%, P < 0.0001), and weakness (-50% in tibialis anterior muscle force, P < 0.0001), increased expression of atrogens (7-fold increase in MuRF1 transcript level, P < 0.0001) and down-regulation of Akt-mTOR pathway (3.3-fold increase in 4EBP1 protein content, P < 0.0001), together with a marked transcriptional rewiring of hepatic metabolism toward an increased expression of gluconeogenic genes (Pcx: +90%, Pck1: +85%), and decreased expression of glycolytic (Slc2a2: -40%, Gk: -30%, Pklr: -60%), ketogenic (Hmgcs2: -55%, Bdh1: -80%), lipolytic/fatty oxidation (Lipe: -50%, Mgll: -60%, Cpt2: -60%, Hadh: -30%), and lipogenic (Acly: -30%, Acacb: -70%, Fasn: -45%) genes. The hypothalamic pituitary-adrenal axis was activated, as evidenced by the increase in the transcript levels of genes encoding corticotropin-releasing hormone in the hypothalamus (2-fold increase, P < 0.01), adrenocorticotropic hormone receptor (3.4-fold increase, P < 0.001), and steroid biosynthesis enzymes (Cyp21a1, P < 0.0001, and Cyp11b1, P < 0.01) in the adrenal glands, as well as by the increase in corticosterone level in the serum (+73%, P < 0.05), skeletal muscle (+17%, P < 0.001), and liver (+24%, P < 0.05) of cachectic 23-week-old Apc mice. A comparative transcriptional analysis with dexamethasone-treated C57BL/6J mice indicated that the activation of the hypothalamic-pituitary-adrenal axis in 23-week-old ApcMin/+ mice was significantly associated with the transcription of glucocorticoid-responsive genes in skeletal muscle (P < 0.05) and liver (P < 0.001). The transcriptional regulation of glucocorticoid-responsive genes was also observed in the gastrocnemius muscle of Lewis lung carcinoma tumour-bearing mice and in KPC mice (tibialis anterior muscle and liver). CONCLUSIONS: These findings highlight the role of the hypothalamic-pituitary-adrenal-glucocorticoid pathway in the transcriptional regulation of skeletal muscle catabolism and hepatic metabolism during cancer cachexia. They also provide the paradigm for the design of new therapeutic strategies.


Asunto(s)
Carcinoma Pulmonar de Lewis , Sistema Hipófiso-Suprarrenal , Anciano , Animales , Caquexia/genética , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/patología , Expresión Génica , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/patología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/patología , Calidad de Vida
13.
J Cachexia Sarcopenia Muscle ; 12(2): 252-273, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33783983

RESUMEN

Cancer cachexia is a complex multi-organ catabolic syndrome that reduces mobility, increases fatigue, decreases the efficiency of therapeutic strategies, diminishes the quality of life, and increases the mortality of cancer patients. This review provides an exhaustive and comprehensive analysis of cancer cachexia-related phenotypic changes in skeletal muscle at both the cellular and subcellular levels in human cancer patients, as well as in animal models of cancer cachexia. Cancer cachexia is characterized by a major decrease in skeletal muscle mass in human and animals that depends on the severity of the disease/model and the localization of the tumour. It affects both type 1 and type 2 muscle fibres, even if some animal studies suggest that type 2 muscle fibres would be more prone to atrophy. Animal studies indicate an impairment in mitochondrial oxidative metabolism resulting from a decrease in mitochondrial content, an alteration in mitochondria morphology, and a reduction in mitochondrial metabolic fluxes. Immuno-histological analyses in human and animal models also suggest that a faulty mechanism of skeletal muscle repair would contribute to muscle mass loss. An increase in collagen deposit, an accumulation of fat depot outside and inside the muscle fibre, and a disrupted contractile machinery structure are also phenotypic features that have been consistently reported in cachectic skeletal muscle. Muscle function is also profoundly altered during cancer cachexia with a strong reduction in skeletal muscle force. Even though the loss of skeletal muscle mass largely contributes to the loss of muscle function, other factors such as muscle-nerve interaction and calcium handling are probably involved in the decrease in muscle force. Longitudinal analyses of skeletal muscle mass by imaging technics and skeletal muscle force in cancer patients, but also in animal models of cancer cachexia, are necessary to determine the respective kinetics and functional involvements of these factors. Our analysis also emphasizes that measuring skeletal muscle force through standardized tests could provide a simple and robust mean to early diagnose cachexia in cancer patients. That would be of great benefit to cancer patient's quality of life and health care systems.


Asunto(s)
Caquexia , Músculo Esquelético , Neoplasias , Animales , Caquexia/etiología , Caquexia/patología , Modelos Animales de Enfermedad , Humanos , Músculo Esquelético/patología , Atrofia Muscular/patología , Neoplasias/complicaciones , Neoplasias/patología , Calidad de Vida
14.
Am J Physiol Regul Integr Comp Physiol ; 298(6): R1659-66, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20237300

RESUMEN

Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.


Asunto(s)
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/metabolismo , Animales , Atrofia/complicaciones , Atrofia/metabolismo , Atrofia/patología , Regulación hacia Abajo , Humanos , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipoxia/patología , Masculino , Mamíferos/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Ratas , Ratas Wistar , Transducción de Señal
15.
J Physiol ; 587(Pt 14): 3703-17, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19470782

RESUMEN

Striated muscle exhibits a pronounced structural-functional plasticity in response to chronic alterations in loading. We assessed the implication of focal adhesion kinase (FAK) signalling in mechano-regulated differentiation of slow-oxidative muscle. Load-dependent consequences of FAK signal modulation were identified using a multi-level approach after electrotransfer of rat soleus muscle with FAK-expression plasmid vs. empty plasmid-transfected contralateral controls. Muscle fibre-targeted over-expression of FAK in anti-gravitational muscle for 9 days up-regulated transcript levels of gene ontologies underpinning mitochondrial metabolism and contraction in the transfected belly portion. Concomitantly, mRNA expression of the major fast-type myosin heavy chain (MHC) isoform, MHC2A, was reduced. The promotion of the slow-oxidative expression programme by FAK was abolished after co-expression of the FAK inhibitor FAK-related non-kinase (FRNK). Elevated protein content of MHC1 (+9%) and proteins of mitochondrial respiration (+165-610%) with FAK overexpression demonstrated the translation of transcript differentiation in targeted muscle fibres towards a slow-oxidative muscle phenotype. Coincidentally MHC2A protein was reduced by 50% due to protection of muscle from de-differentiation with electrotransfer. Fibre cross section in FAK-transfected muscle was elevated by 6%. The FAK-modulated muscle transcriptome was load-dependent and regulated in correspondence to tyrosine 397 phosphorylation of FAK. In the context of overload, the FAK-induced gene expression became manifest at the level of contraction by a slow transformation and the re-establishment of normal muscle force from the lowered levels with transfection. These results highlight the analytic power of a systematic somatic transgene approach by mapping a role of FAK in the dominant mechano-regulation of muscular motor performance via control of gene expression.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Oxígeno/metabolismo , Adaptación Fisiológica/fisiología , Animales , Femenino , Oxidación-Reducción , Ratas , Ratas Wistar
16.
Endocrinology ; 150(1): 286-94, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18801898

RESUMEN

Myostatin, a member of the TGF-beta family, has been identified as a master regulator of embryonic myogenesis and early postnatal skeletal muscle growth. However, cumulative evidence also suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression and that myostatin may contribute to muscle mass loss in adulthood. Two major branches of the Akt pathway are relevant for the regulation of skeletal muscle mass, the Akt/mammalian target of rapamycin (mTOR) pathway, which controls protein synthesis, and the Akt/forkhead box O (FOXO) pathway, which controls protein degradation. Here, we provide further insights into the mechanisms by which myostatin regulates skeletal muscle mass by showing that myostatin negatively regulates Akt/mTOR signaling pathway. Electrotransfer of a myostatin expression vector into the tibialis anterior muscle of Sprague Dawley male rats increased myostatin protein level and decreased skeletal muscle mass 7 d after gene electrotransfer. Using RT-PCR and immunoblot analyses, we showed that myostatin overexpression was ineffective to alter the ubiquitin-proteasome pathway. By contrast, myostatin acted as a negative regulator of Akt/mTOR pathway. This was supported by data showing that the phosphorylation of Akt on Thr308, tuberous sclerosis complex 2 on Thr1462, ribosomal protein S6 on Ser235/236, and 4E-BP1 on Thr37/46 was attenuated 7 d after myostatin gene electrotransfer. The data support the conclusion that Akt/mTOR signaling is a key target that accounts for myostatin function during muscle atrophy, uncovering a novel role for myostatin in protein metabolism and more specifically in the regulation of translation in skeletal muscle.


Asunto(s)
Músculo Esquelético/fisiología , Miostatina/genética , Proteínas Quinasas/genética , Animales , Atrofia , ADN/genética , Cartilla de ADN , Regulación hacia Abajo , Masculino , Músculo Esquelético/patología , Plásmidos/genética , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina-Treonina Quinasas TOR
17.
Eur J Appl Physiol ; 106(3): 389-98, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19294408

RESUMEN

We examined the involvement of focal adhesion kinase (FAK) in mechano-regulated signalling to protein synthesis by combining muscle-targeted transgenesis with a physiological model for un- and reloading of hindlimbs. Transfections of mouse tibialis anterior muscle with a FAK expression construct increased FAK protein 1.6-fold versus empty transfection in the contralateral leg and elevated FAK concentration at the sarcolemma. Altered activation status of phosphotransfer enzymes and downstream translation factors showed that FAK overexpression was functionally important. FAK auto-phosphorylation on Y397 was enhanced between 1 and 6 h of reloading and preceded the activation of p70S6K after 24 h of reloading. Akt and translation initiation factors 4E-BP1 and 2A, which reside up- or downstream of p70S6K, respectively, showed no FAK-modulated regulation. The findings identify FAK as an upstream element of the mechano-sensory pathway of p70S6K activation whose Akt-independent regulation intervenes in control of muscle mass by mechanical stimuli in humans.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Mecanotransducción Celular/fisiología , Proteínas Musculares/biosíntesis , Transducción de Señal/fisiología , Animales , Quinasa 1 de Adhesión Focal/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Masculino , Ratones , Proteína Quinasa 3 Activada por Mitógenos/fisiología , FN-kappa B/fisiología , Fosforilación/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/fisiología
18.
Endocrinology ; 148(7): 3140-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17395701

RESUMEN

Myostatin is a master regulator of myogenesis and early postnatal skeletal muscle growth. However, myostatin has been also involved in several forms of muscle wasting in adulthood, suggesting a functional role for myostatin in the regulation of skeletal muscle mass in adult. In the present study, localized ectopic expression of myostatin was achieved by gene electrotransfer of a myostatin expression vector into the tibialis anterior muscle of adult Sprague Dawley male rats. The corresponding empty vector was electrotransfected in contralateral muscle. Ectopic myostatin mRNA was abundantly present in muscles electrotransfected with myostatin expression vector, whereas it was undetectable in contralateral muscles. Overexpression of myostatin elicited a significant decrease in muscle mass (10 and 20% reduction 7 and 14 d after gene electrotransfer, respectively), muscle fiber cross-sectional area (15 and 30% reduction 7 and 14 d after gene electrotransfer, respectively), and muscle protein content (20% reduction). No decrease in fiber number was observed. Overexpression of myostatin markedly decreased the expression of muscle structural genes (myosin heavy chain IIb, troponin I, and desmin) and the expression of myogenic transcription factors (MyoD and myogenin). Incidentally, mRNA level of caveolin-3 and peroxisome proliferator activated receptor gamma coactivator-1alpha was also significantly decreased 14 d after myostatin gene electrotransfer. To conclude, our study demonstrates that myostatin-induced muscle atrophy elicits the down-regulation of muscle-specific gene expression. Our observations support an important role for myostatin in muscle atrophy in physiological and physiopathological situations where myostatin expression is induced.


Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Animales , Caveolina 3/genética , Caveolina 3/metabolismo , Vectores Genéticos/genética , Immunoblotting , Masculino , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Proteína MioD/genética , Proteína MioD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Miostatina , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética
19.
J Appl Physiol (1985) ; 102(2): 529-40, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17082363

RESUMEN

Major modifications in energy homeostasis occur in skeletal muscle during exercise. Emerging evidence suggests that changes in energy homeostasis take part in the regulation of gene expression and contribute to muscle plasticity. A number of energy-sensing molecules have been shown to sense variations in energy homeostasis and trigger regulation of gene expression. The AMP-activated protein kinase, hypoxia-inducible factor 1, peroxisome proliferator-activated receptors, and Sirt1 proteins all contribute to altering skeletal muscle gene expression by sensing changes in the concentrations of AMP, molecular oxygen, intracellular free fatty acids, and NAD+, respectively. These molecules may therefore sense information relating to the intensity, duration, and frequency of muscle exercise. Mitochondria also contribute to the overall response, both by modulating the response of energy-sensing molecules and by generating their own signals. This review seeks to examine our current understanding of the roles that energy-sensing molecules and mitochondria can play in the regulation of gene expression in skeletal muscle.


Asunto(s)
Metabolismo Energético/fisiología , Regulación de la Expresión Génica/fisiología , Músculo Esquelético/metabolismo , Animales , Metabolismo Energético/genética , Ejercicio Físico/fisiología , Homeostasis/fisiología , Humanos , Ratones , Mitocondrias Musculares/fisiología , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología
20.
Sci Rep ; 7: 43663, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28255159

RESUMEN

Chronic intermittent hypoxia (IH) associated with obstructive sleep apnea (OSA) is a major risk factor for cardiovascular and metabolic diseases (insulin resistance: IR). Autophagy is involved in the pathophysiology of IR and high intensity training (HIT) has recently emerged as a potential therapy. We aimed to confirm IH-induced IR in a tissue-dependent way and to explore the preventive effect of HIT on IR-induced by IH. Thirty Swiss 129 male mice were randomly assigned to Normoxia (N), Intermittent Hypoxia (IH: 21-5% FiO2, 30 s cycle, 8 h/day) or IH associated with high intensity training (IH HIT). After 8 days of HIT (2*24 min, 50 to 90% of Maximal Aerobic Speed or MAS on a treadmill) mice underwent 14 days IH or N. We found that IH induced IR, characterized by a greater glycemia, an impaired insulin sensitivity and lower AKT phosphorylation in adipose tissue and liver. Nevertheless, MAS and AKT phosphorylation were greater in muscle after IH. IH associated with HIT induced better systemic insulin sensitivity and AKT phosphorylation in liver. Autophagy markers were not altered in both conditions. These findings suggest that HIT could represent a preventive strategy to limit IH-induced IR without change of basal autophagy.


Asunto(s)
Autofagia , Hipoxia/metabolismo , Resistencia a la Insulina , Condicionamiento Físico Animal , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Peso Corporal , Ingestión de Alimentos , Hematócrito , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Músculo Esquelético/metabolismo , Transducción de Señal , Apnea Obstructiva del Sueño/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA