Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1210: 185-237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31900911

RESUMEN

Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.


Asunto(s)
Metabolismo Energético , Neoplasias de la Próstata/metabolismo , Hipoxia de la Célula , Humanos , Masculino , Neoplasias de la Próstata/terapia , Microambiente Tumoral
3.
Carcinogenesis ; 36(9): 1051-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26088362

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by aggressiveness and affects 10-20% of breast cancer patients. Since TNBC lacks expression of ERα, PR and HER2, existing targeted treatments are not effective and the survival is poor. In this study, we demonstrate that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration. We show that EPHA2 expression is correlated with poor survival specifically in basal-like breast cancer and that its expression is repressed by miR-200a through direct interaction with the 3'UTR of EPHA2. This regulation subsequently affects the downstream activation of AMP-activated protein kinase (AMPK) and results in decreased cell migration of TNBC. We establish that miR-200a directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway. The miR-200a-EPHA2 axis is a novel mechanism highlighting the possibility of utilizing miR-200a delivery to target TNBC metastases.


Asunto(s)
MicroARNs/genética , Receptor EphA2/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/patología , Regiones no Traducidas 3'/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Activación Enzimática/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Receptor EphA2/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/mortalidad
4.
Cancer Res ; 84(11): 1742-1744, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831750

RESUMEN

Obesity has been linked to prostate cancer in a stage-dependent manner, having no association with cancer initiation but correlating with disease progression in men with prostate cancer. Given the rising obesity rate and its association to aggressive prostate cancer, there is a growing need to understand the mechanisms underlying this relationship to identify patients at increased risk of lethal disease and inform therapeutic approaches. In this issue of Cancer Research, Boufaied and colleagues describe how diets high in saturated fatty acids promote MYC-driven prostate cancer. Leveraging MYC-expressing genetically engineered and allograft mouse models fed either a control low-fat or high-fat diet (HFD) enriched in saturated fatty acids, the authors found using digital pathology that HFD-fed mice exhibited increased tumor invasion. Metabolomics, transcriptomics, immunoblotting, and positron emission tomography of tumors from these mice demonstrated that a HFD promoted a metabolic shift in the tumors towards glycolysis. These preclinical data were supported by findings from two large clinical cohorts revealing that men diagnosed with prostate cancer and who consumed high levels of saturated fatty acids possessed tumors bearing glycolytic signatures. Deconvolution analyses and immunohistochemistry validation showed that these tumors also displayed increased angiogenesis and infiltration of immunosuppressive macrophages and regulatory T cells, the latter of which was also correlated with high saturated fat intake-associated glycolytic signatures in patient tumors. Together, these findings suggest that diets rich in saturated fatty acids, rather than obesity alone, accelerate MYC-driven prostate cancers through shifting tumor metabolism and shaping the tumor microenvironment. See related article by Boufaied et al., p. 1834.


Asunto(s)
Dieta Alta en Grasa , Neoplasias de la Próstata , Microambiente Tumoral , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Animales , Humanos , Ratones , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Obesidad/metabolismo , Obesidad/genética , Glucólisis
5.
Nat Rev Urol ; 21(10): 615-637, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38627553

RESUMEN

Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.


Asunto(s)
Ferroptosis , Neoplasias de la Próstata , Ferroptosis/fisiología , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Biomarcadores de Tumor/metabolismo
6.
Endocr Relat Cancer ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39324992

RESUMEN

Hormone therapy (HT) to treat prostate cancer is reported to cause adverse changes in body composition. Clinically, interpatient body composition changes are heterogeneous, but the biologic and clinical determinants of body composition toxicity are unknown. Herein, we test the hypothesis that inherited polymorphisms in steroidogenic genes are associated with differential change in body composition after HT. Men with biochemically recurrent prostate cancer (BCR) who received 8 months of LHRH analog (LHRHa) +/- abiraterone acetate (AAP) were eligible if they had: 1) CT imaging of L3 prior to and after treatment, and 2) nucleated cells collected. Cardiometabolic co-morbidities were retrospectively extracted. Body composition was measured using an AI-based segmentation tool. Germline DNA whole exome or genome sequencing was performed. In 162 men treated with 8 months of HT, median skeletal muscle mass (SMMi) loss was 6.6% and subcutaneous adipose gain was 12.3%. Men with type 2 diabetes had higher loss of SMMi after treatment (-11.1% vs. -6.3%, p = 0.003). For the 150 men with germline NGS, SRD5A2 rs523349 genotype was associated with differential loss in skeletal muscle density after HT, (-1.3% vs. -7.1%, p=0.04). In addition, HSD3B1 rs104703 genotype was associated with decreased baseline visceral adipose tissue (63.0 cm2/m2 vs. 77.9, p=0.05). In men with BCR, HT induced notable loss of skeletal muscle and increased subcutaneous adipose tissue. An inherited polymorphism in SRD5A2 and T2DM were associated with differential skeletal muscle toxicity. These findings suggest that inherited polymorphisms may contribute to the body composition toxicity observed with HT.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39019979

RESUMEN

BACKGROUND: Androgen signaling is central to prostate cancer and men's health. Prior data indicates that increasing body fat is unfavorable in the localized setting yet associated with favorable outcomes in men with metastatic disease. Understanding the biological links between adiposity and prostate cancer may optimize the therapeutic index with ASI. We hypothesized that host adiposity and androgen synthesis are linked to the efficacy and toxicity of ASI for men with metastatic castration-resistant prostate cancer (mCRPC). METHODS: A post-hoc analysis was done of NCT02703623 where men with mCRPC (n = 186) were treated for 8 weeks with abiraterone acetate, prednisone, and apalutamide (AAPA), and a satisfactory response was defined as a PSA decline >50%. Body composition was measured on baseline CT scans. Germline DNA WES was performed with a focus on variants in steroidogenic genes. Adipokine levels were measured in pre-treatment plasma. RESULTS: Germline polymorphisms in 3 genes involved in androgen synthesis (AKR1C3 rs12529, CYP17A1 rs6162, SRD5A2 rs523349) were associated with differences in body composition at baseline on ADT alone (prior to receipt of AAPA). Elevated subcutaneous adipose tissue index (SATi, p = 0.02), visceral adipose tissue index (VATi, p = 0.03), and BMI (p = 0.04) were associated with satisfactory response to AAPA. Leptin had positive correlation with VATi (r = 0.47) and SATi (r = 0.48). CONCLUSION: Inherited polymorphisms in androgen synthesis correlated with differences in body composition after exposure to ADT and warrant further investigation as candidate markers for body composition toxicity. Elevated subcutaneous and visceral adiposity were associated with improved response to ASI.

8.
Cancer Res ; 84(5): 703-724, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38038968

RESUMEN

Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE: ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Ratones , Animales , Lipólisis/genética , Metabolismo de los Lípidos , Lipasa/genética , Lipasa/metabolismo , Serina/metabolismo , Microambiente Tumoral , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina
9.
Mol Cancer Res ; 21(12): 1329-1341, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698543

RESUMEN

The clinical success of combined androgen deprivation therapy (ADT) and radiotherapy (RT) in prostate cancer created interest in understanding the mechanistic links between androgen receptor (AR) signaling and the DNA damage response (DDR). Convergent data have led to a model where AR both regulates, and is regulated by, the DDR. Integral to this model is that the AR regulates the transcription of DDR genes both at a steady state and in response to ionizing radiation (IR). In this study, we sought to determine which immediate transcriptional changes are induced by IR in an AR-dependent manner. Using PRO-seq to quantify changes in nascent RNA transcription in response to IR, the AR antagonist enzalutamide, or the combination of the two, we find that enzalutamide treatment significantly decreased expression of canonical AR target genes but had no effect on DDR gene sets in prostate cancer cells. Surprisingly, we also found that the AR is not a primary regulator of DDR genes either in response to IR or at a steady state in asynchronously growing prostate cancer cells. IMPLICATIONS: Our data indicate that the clinical benefit of combining ADT with RT is not due to direct AR regulation of DDR gene transcription, and that the field needs to consider alternative mechanisms for this clinical benefit.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antagonistas de Andrógenos/farmacología , Línea Celular Tumoral , Daño del ADN , Neoplasias de la Próstata Resistentes a la Castración/genética
10.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37192413

RESUMEN

Given the central role of the androgen receptor (AR) in prostate cancer cell biology, AR-targeted therapies have been the backbone of prostate cancer treatment for over 50 years. New data indicate that AR is expressed in additional cell types within the tumor microenvironment. Moreover, targeting AR for the treatment of prostate cancer has established side effects such as bone complications and an increased risk of developing cardiometabolic disease, indicating broader roles for AR. With the advent of novel technologies, such as single-cell approaches and advances in preclinical modeling, AR has been identified to have clinically significant functions in other cell types. In this mini-review, we describe new cancer cell-extrinsic roles for AR within the tumor microenvironment as well as systemic effects that collectively impact prostate cancer progression and patient outcomes.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Humanos , Masculino , Antagonistas de Receptores Androgénicos , Huesos/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA