RESUMEN
In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates.
Asunto(s)
Genómica/educación , Curriculum , Modelos Educacionales , Desarrollo de Programa , Estados Unidos , UniversidadesRESUMEN
There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit.
Asunto(s)
Biología/educación , Curriculum , Investigación/educación , Actitud , Conducta Cooperativa , Recolección de Datos , Docentes , Genoma , Genómica/educación , Humanos , Conocimiento , Aprendizaje , Anotación de Secuencia Molecular , Evaluación de Programas y Proyectos de Salud , Investigadores , Autoinforme , Encuestas y Cuestionarios , Factores de TiempoRESUMEN
Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students.
Asunto(s)
Investigación Genética , Genómica/educación , Laboratorios , Universidades , Animales , Docentes , Estudiantes/psicologíaRESUMEN
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a species complex that is one of the most devastating agricultural pests worldwide and affects a broad range of food, fiber and ornamental crops. Unfortunately, using parsimony and neighbor joining methods, global phylogenetic relationships of the major races/biotypes of B. tabaci remain unresolved. Aside from the limitations of these methods, phylogenetic analyses have been limited to only small subsets of the global collection of B. tabaci, and thus limited taxon sampling has confounded the analyses. To improve our understanding of global B. tabaci phylogenetic relationships, a Bayesian phylogenetic technique was utilized to elucidate the relationships among all COI DNA sequence data available in GenBank for B. tabaci worldwide (366 specimens). As a result, the first well-resolved phylogeny for the B. tabaci species complex was produced showing 12 major well-resolved (0.70 posterior probability or above) genetic groups: B. tabaci (Mediterranean/Asia Minor/Africa), B. tabaci (Mediterranean), B. tabaci (Indian Ocean), B. tabaci (sub-Saharan Africa silverleafing), B. tabaci (Asia I), B. tabaci (Australia), B. tabaci (China), B. tabaci (Asia II), B. tabaci (Italy), B. tabaci (New World), B. tabaci (sub-Saharan Africa non-silverleafing) and B. tabaci (Uganda sweet potato). Further analysis of this phylogeny shows a close relationship of the New World B. tabaci with Asian biotypes, and characteristics of the major sub-Saharan Africa non-silverleafing clade strongly supports an African origin of B. tabaci due to its position at the base of the global phylogeny, and the diversity of well-resolved sub-clades within this group. Bayesian re-analyses of B. tabaci ITS, COI, and a combined dataset from a previous study resulted in seven major well-resolved races with high posterior probabilities, also showing the utility of the Bayesian method. Relationships of the 12 major B. tabaci genetic groups are discussed herein.
Asunto(s)
ADN Mitocondrial/genética , Hemípteros/clasificación , Hemípteros/genética , Animales , Teorema de Bayes , ADN Espaciador Ribosómico/genética , Complejo IV de Transporte de Electrones/genética , Evolución Molecular , Genes de Insecto , Hemípteros/enzimología , Modelos Genéticos , Datos de Secuencia Molecular , FilogeniaRESUMEN
The Florida Everglades have been invaded by an exotic weed fern, Lygodium microphyllum. Across its native distribution in the Old World tropics from Africa to Australasia it was found to have multiple location-specific haplotypes. Within this distribution, the climbing fern is attacked by a phytophagous mite, Floracarus perrepae, also with multiple haplotypes. The genetic relationship between mite and fern haplotypes was matched by an overarching geographical relationship between the two. Further, mites that occur in the same location as a particular fern haplotype were better able to utilize the fern than mites from more distant locations. From a biological control context, we are able to show that the weed fern in the Everglades most likely originated in northern Queensland, Australia/Papua New Guinea and that the mite from northern Queensland offers the greatest prospect for control.
Asunto(s)
Ecosistema , Helechos/genética , Filogenia , Garrapatas/genética , Animales , Asia Sudoriental , Australia , Secuencia de Bases , Análisis por Conglomerados , ADN Mitocondrial/genética , Florida , Geografía , Haplotipos/genética , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo de Longitud del Fragmento de Restricción , Dinámica Poblacional , Análisis de Secuencia de ADN , Homología de SecuenciaRESUMEN
We report the first systematic survey for the presence of Wolbachia endosymbionts in aphids and whiteflies, particularly different populations and biotypes of Bemisia tabaci. Additional agriculturally important species included were predator species, leafhoppers, and lepidopterans. We used a polymerase chain reaction (PCR)-based detection assay with ribosomal 16S rDNA and Wolbachia cell surface protein (wsp) gene primers. Wolbachia were detected in a number of whitefly populations and species, whitefly predators, and one leafhopper species; however, none of the aphid species tested were found infected. Single, double, and triple infections were detected in some of the B. tabaci populations. PCR and phylogenetic analysis of wsp gene sequences indicated that all Wolbachia strains found belong to group B. Topologies of the optimal tree derived by maximum likelihood (ML) and a ML tree in which Wolbachia sequences from B. tabaci are constrained to be monophyletic are significantly different. Our results indicate that there have been at least four independent Wolbachia infection events in B. tabaci. The importance of the presence of Wolbachia infections in B. tabaci is discussed.