Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochem J ; 455(1): 57-65, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23800229

RESUMEN

Mitochondrial iron uptake is of key importance both for organelle function and cellular iron homoeostasis. The mitochondrial carrier family members Mrs3 and Mrs4 (homologues of vertebrate mitoferrin) function in organellar iron supply, yet other low efficiency transporters may exist. In Saccharomyces cerevisiae, overexpression of RIM2 (MRS12) encoding a mitochondrial pyrimidine nucleotide transporter can overcome the iron-related phenotypes of strains lacking both MRS3 and MRS4. In the present study we show by in vitro transport studies that Rim2 mediates the transport of iron and other divalent metal ions across the mitochondrial inner membrane in a pyrimidine nucleotide-dependent fashion. Mutations in the proposed substrate-binding site of Rim2 prevent both pyrimidine nucleotide and divalent ion transport. These results document that Rim2 catalyses the co-import of pyrimidine nucleotides and divalent metal ions including ferrous iron. The deletion of RIM2 alone has no significant effect on mitochondrial iron supply, Fe-S protein maturation and haem synthesis. However, RIM2 deletion in mrs3/4Δ cells aggravates their Fe-S protein maturation defect. We conclude that under normal physiological conditions Rim2 does not play a significant role in mitochondrial iron acquisition, yet, in the absence of the main iron transporters Mrs3 and Mrs4, this carrier can supply the mitochondrial matrix with iron in a pyrimidine-nucleotide-dependent fashion.


Asunto(s)
Hierro/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Nucleótidos de Pirimidina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Cationes Bivalentes , Hemo/biosíntesis , Mitocondrias/genética , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Mutación , Proteínas de Transporte de Nucleótidos/genética , Oxidación-Reducción , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochim Biophys Acta ; 1788(5): 1044-50, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19285482

RESUMEN

The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe(2+) homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe(2+) utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe(2+) which was driven by the external Fe(2+) concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Delta failed to show this rapid Fe(2+) uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe(2+) uptake rates. Cu(2+) was transported at similar rates as Fe(2+), while other divalent cations, such as Zn(2+) and Cd(2+) apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe(2+) across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fenómenos Biofísicos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Colorantes Fluorescentes , Eliminación de Gen , Genes Fúngicos , Transporte Iónico , Cinética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Compuestos Orgánicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Microbiol ; 69(3): 570-85, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18485069

RESUMEN

Sal1p, a novel Ca2+-dependent ATP-Mg/Pi carrier, is essential in yeast lacking all adenine nucleotide translocases. By targeting luciferase to the mitochondrial matrix to monitor mitochondrial ATP levels, we show in isolated mitochondria that both ATP-Mg and free ADP are taken up by Sal1p with a K(m) of 0.20 +/- 0.03 mM and 0.28 +/- 0.06 mM respectively. Nucleotide transport along Sal1p is strictly Ca2+ dependent. Ca2+ increases the V(max) with a S(0.5) of 15 muM, and no changes in the K(m) for ATP-Mg. Glucose sensing in yeast generates Ca2+ transients involving Ca2+ influx from the external medium. We find that carbon-deprived cells respond to glucose with an immediate increase in mitochondrial ATP levels which is not observed in the presence of EGTA or in Sal1p-deficient cells. Moreover, we now report that during normal aerobic growth on glucose, yeast mitochondria import ATP from the cytosol and hydrolyse it through H+-ATP synthase. We identify two pathways for ATP uptake in mitochondria, the ADP/ATP carriers and Sal1p. Thus, during exponential growth on glucose, mitochondria are ATP consumers, as those from cells growing in anaerobic conditions or deprived of mitochondrial DNA which depend on cytosolic ATP and mitochondrial ATPase working in reverse to generate a mitochondrial membrane potential. In conclusion, the results show that growth on glucose requires ATP hydrolysis in mitochondria and recruits Sal1p as a Ca2+-dependent mechanism to import ATP-Mg from the cytosol. Whether this mechanism is used under similar settings in higher eukaryotes is an open question.


Asunto(s)
Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Glucosa/metabolismo , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Aerobiosis , Transporte Biológico , Luciferasas/análisis , Luciferasas/genética , Luciferasas/metabolismo , Magnesio/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Translocasas Mitocondriales de ADP y ATP/genética , Fosfatos/metabolismo , Fosforilación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Cell Biol Int ; 32(11): 1449-58, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18771740

RESUMEN

We have monitored the effects of KLKL(5)KLK (KLK), a derivative of a natural cationic antimicrobial peptide (CAP) on isolated membrane vesicles, and investigated the partition of the peptide within these structures. KLK readily interacted with fluorescent dyes entrapped in the vesicles without apparent pore formation. Fractionation of vesicles revealed KLK predominantly in the membrane. Peptide-treated vesicles appeared with generally disorganized bilayers. While KLK showed no effect on osmotic resistance of human erythrocytes, dramatic decrease in core and surface membrane fluidity was observed in peptide-treated erythrocyte ghosts as measured by fluorescence anisotropy. Finally, CD spectroscopy revealed lipid-induced random coil to beta-sheet and beta-sheet to alpha-helix conformational transitions of KLK. Together with the oligonucleotide oligo-d(IC)(13) [ODN1a], KLK functions as a novel adjuvant, termed IC31. Among other immunological effects, KLK appears to facilitate the uptake and delivery of ODN1a into cellular compartments, but the nature of KLK's interaction with the cell surface and other membrane-bordered compartments remains unknown. Our results suggest a profound membrane interacting property of KLK that might contribute to the immunostimulatory activities of IC31.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Membrana Celular/efectos de los fármacos , Membranas Intracelulares/efectos de los fármacos , Oligopéptidos/farmacología , Vesículas Transportadoras/efectos de los fármacos , Membrana Celular/química , Sinergismo Farmacológico , Membrana Eritrocítica/química , Membrana Eritrocítica/efectos de los fármacos , Polarización de Fluorescencia , Colorantes Fluorescentes , Humanos , Membranas Intracelulares/química , Fluidez de la Membrana/efectos de los fármacos , Fluidez de la Membrana/fisiología , Conformación Proteica/efectos de los fármacos , Fracciones Subcelulares , Vesículas Transportadoras/química , Levaduras
5.
Biochim Biophys Acta ; 1711(1): 41-8, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15904662

RESUMEN

YOL027c in yeast and LETM1 in humans encode integral proteins of the inner mitochondrial membrane. They have been implicated in mitochondrial K+ homeostasis and volume control. To further characterize their role, we made use of submitochondrial particles (SMPs) with entrapped K+- and H+-sensitive fluorescent dyes PBFI and BCECF, respectively, to study the kinetics of K+ and H+ transport across the yeast inner mitochondrial membrane. Wild-type SMPs exhibited rapid, reciprocal translocations of K+ and H+ driven by concentration gradients of either of them. K+ and H+ translocations have stoichiometries similar to those mediated by the exogenous K+/H+ exchanger nigericin, and they are shown to be essentially electroneutral and obligatorily coupled. Moreover, [K+] gradients move H+ against its concentration gradient, and vice-versa. These features, as well as the sensitivity of K+ and H+ fluxes to quinine and Mg2+, qualify these activities as K+/H+ exchange reactions. Both activities are abolished when the yeast Yol027p protein is absent (yol027Delta mutant SMPs), indicating that it has an essential role in this reaction. The replacement of the yeast Yol027p by the human Letm1 protein restores K+/H+ exchange activity confirming functional homology of the yeast and human proteins. Considering their newly identified function, we propose to refer to the yeast YOL027c gene and the human LETM1 gene as yMKH1 and hMKH1, respectively.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Hidrógeno/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales , Potasio/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Proteínas de Saccharomyces cerevisiae/genética , Levaduras/genética , Levaduras/metabolismo
6.
FEBS J ; 273(6): 1198-209, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16519685

RESUMEN

The nuclear gene MRS2 in Saccharomyces cerevisiae encodes an integral protein (Mrs2p) of the inner mitochondrial membrane. It forms an ion channel mediating influx of Mg2+ into mitochondria. Orthologues of Mrs2p have been shown to exist in other lower eukaryotes, in vertebrates and in plants. Characteristic features of the Mrs2 protein family and the distantly related CorA proteins of bacteria are the presence of two adjacent transmembrane domains near the C terminus of Mrs2p one of which ends with a F/Y-G-M-N motif. Two coiled-coil domains and several conserved primary sequence blocks in the central part of Mrs2p are identified here as additional characteristics of the Mrs2p family. Gain-of-function mutations obtained upon random mutagenesis map to these conserved sequence blocks. They lead to moderate increases in mitochondrial Mg2+ concentrations and concomitant positive effects on splicing of mutant group II intron RNA. Site-directed mutations in several conserved sequences reduce Mrs2p-mediated Mg2+ uptake. Mutants with strong effects on mitochondrial Mg2+ concentrations also have decreased group II intron splicing. Deletion of a nonconserved basic region, previously invoked for interaction with mitochondrial introns, lowers intramitochondrial Mg2+ levels as well as group II intron splicing. Data presented support the notion that effects of mutations in Mrs2p on group II intron splicing are a consequence of changes in steady-state mitochondrial Mg2+ concentrations.


Asunto(s)
Intrones , Magnesio/metabolismo , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arginina/genética , Proteínas de Transporte de Catión/genética , Análisis Mutacional de ADN , Canales Iónicos , Magnesio/fisiología , Mitocondrias , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Empalme del ARN , Eliminación de Secuencia , Homología de Secuencia de Aminoácido
7.
FEMS Microbiol Lett ; 237(1): 49-55, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15268937

RESUMEN

The Mg2+ fluorescent dye mag-fura 2, entrapped in cells or organelles, has frequently been used for dual excitation ratio-metric determinations of free ionic Mg2+ concentrations in eukaryotic, mostly mammalian cells. Here we report its successful application to measure free Mg2+ concentrations ([Mg2+]i) in Salmonella enterica cells. When kept in nominally Mg2+ free buffer (resting conditions), the [Mg2+]i of wild-type cells has been determined to be 0.9 mM. An increase in the external Mg2+ concentration ([Mg2+]e) resulted in a rapid increase of [Mg2+]i, saturating within a few seconds at about 1.5 mM with [Mg2+]e of 20 mM. In contrast, cells lacking the Mg2+ transport proteins CorA, MgtA, MgtB failed to show this rapid increase. Instead, their [Mg2+]i increased steadily over extended periods of time and saturated at concentrations below those of wild-type cells. Mg2+ uptake rates increased more than 15-fold when corA was overexpressed in these mutant cells. Uptake of Mg2+ into corA expressing cells was strongly stimulated by nigericin, which increased the membrane potential DeltaPsi at the expense of DeltapH, and drastically reduced by valinomycin, which decreased the membrane potential DeltaPsi. These results reveal mag-fura 2 as a useful indicator to measure steady-state [Mg2+]i values in resting bacterial cells and to determine Mg2+ uptake rates. They confirm the role of CorA as the major Mg2+ transport protein and reveal the membrane potential as driving force for Mg2+ uptake into S. enterica cells.


Asunto(s)
Cationes Bivalentes/análisis , Fura-2/análogos & derivados , Fura-2/farmacología , Magnesio/análisis , Salmonella enterica/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/fisiología , Citoplasma/química , Fluorescencia , Colorantes Fluorescentes/farmacología , Ionóforos/farmacología , Potenciales de la Membrana , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Nigericina/farmacología , Fuerza Protón-Motriz , Salmonella enterica/metabolismo , Valinomicina/farmacología
8.
FEBS J ; 277(17): 3514-25, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20653776

RESUMEN

Saccharomyces cerevisiae Lpe10p is a homologue of the Mg(2+)-channel-forming protein Mrs2p in the inner mitochondrial membrane. Deletion of MRS2, LPE10 or both results in a petite phenotype, which exhibits a respiratory growth defect on nonfermentable carbon sources. Only coexpression of MRS2 and LPE10 leads to full complementation of the mrs2Delta/lpe10Delta double disruption, indicating that these two proteins cannot substitute for each other. Here, we show that deletion of LPE10 results in a loss of rapid Mg(2+) influx into mitochondria, as has been reported for MRS2 deletion. Additionally, we found a considerable loss of the mitochondrial membrane potential (DeltaPsi) in the absence of Lpe10p, which was not detected in mrs2Delta cells. Addition of the K(+)/H(+)-exchanger nigericin, which artificially increases DeltaPsi, led to restoration of Mg(2+) influx into mitochondria in lpe10Delta cells, but not in mrs2Delta/lpe10Delta cells. Mutational analysis of Lpe10p and domain swaps between Mrs2p and Lpe10p suggested that the maintenance of DeltaPsi and that of Mg(2+) influx are functionally separated. Cross-linking and Blue native PAGE experiments indicated interaction of Lpe10p with the Mrs2p-containing channel complex. Using the patch clamp technique, we showed that Lpe10p was not able to mediate high-capacity Mg(2+) influx into mitochondrial inner membrane vesicles without the presence of Mrs2p. Instead, coexpression of Lpe10p and Mrs2p yielded a unique, reduced conductance in comparison to that of Mrs2p channels. In summary, the data presented show that the interplay of Lpe10p and Mrs2p is of central significance for the transport of Mg(2+) into mitochondria of S. cerevisiae.


Asunto(s)
Canales Iónicos/metabolismo , Magnesio/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membranas Mitocondriales/metabolismo
9.
Methods Enzymol ; 457: 305-17, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19426875

RESUMEN

The mitochondrial K(+)/H(+) exchanger (KHE) is a key regulator of mitochondrial K(+), the most abundant cellular cation, and thus for volume control of the organelle. Downregulation of the mitochondrial KHE results in osmotic swelling and autophagic degradation of the organelle. This chapter describes methods to shut-off expression of Mdm38p, an essential factor of the mitochondrial KHE, and to observe the cellular consequences thereof, in particular changes in KHE activity and morphogenetic changes of mitochondria by applying new techniques developed in our laboratories.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia , Regulación de la Expresión Génica , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mitocondrias/metabolismo , Proteínas Mitocondriales , Ósmosis , Potasio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 283(23): 16235-47, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18367447

RESUMEN

The molecular biology of mammalian magnesium transporters and their interrelations in cellular magnesium homeostasis are largely unknown. Recently, the mouse SLC41A1 protein was suggested to be a candidate magnesium transporter with channel-like properties when overexpressed in Xenopus laevis oocytes. Here, we demonstrate that human SLC41A1 overexpressed in HEK293 cells forms protein complexes and locates to the plasma membrane without, however, giving rise to any detectable magnesium currents during whole cell patch clamp experiments. Nevertheless, in a strain of Salmonella enterica exhibiting disruption of all three distinct magnesium transport systems (CorA, MgtA, and MgtB), overexpression of human SLC41A1 functionally substitutes these transporters and restores the growth of the mutant bacteria at magnesium concentrations otherwise non-permissive for growth. Thus, we have identified human SLC41A1 as being a bona fide magnesium transporter. Most importantly, overexpressed SLC41A1 provide HEK293 cells with an increased magnesium efflux capacity. With outwardly directed Mg(2+) gradients, a SLC41A1-dependent reduction of the free intracellular magnesium concentration accompanied by a significant net decrease of the total cellular magnesium concentration could be observed in such cells. SLC41A1 activity is temperature-sensitive but not sensitive to the only known magnesium channel blocker, cobalt(III) hexaammine. Taken together, these data functionally identify SLC41A1 as a mammalian carrier mediating magnesium efflux.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Animales , Antineoplásicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/genética , Línea Celular , Cobalto/farmacología , Prueba de Complementación Genética , Humanos , Transporte Iónico/fisiología , Ratones , Salmonella enterica/genética , Salmonella enterica/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
11.
J Biol Chem ; 279(29): 30307-15, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15138253

RESUMEN

The yeast open reading frames YOL027 and YPR125 and their orthologs in various eukaryotes encode proteins with a single predicted trans-membrane domain ranging in molecular mass from 45 to 85 kDa. Hemizygous deletion of their human homolog LETM1 is likely to contribute to the Wolf-Hirschhorn syndrome phenotype. We show here that in yeast and human cells, these genes encode integral proteins of the inner mitochondrial membrane. Deletion of the yeast YOL027 gene (yol027Delta mutation) results in mitochondrial dysfunction. This mutant phenotype is complemented by the expression of the human LETM1 gene in yeast, indicating a functional conservation of LetM1/Yol027 proteins from yeast to man. Mutant yol027Delta mitochondria have increased cation contents, particularly K+ and low-membrane-potential Deltapsi. They are massively swollen in situ and refractory to potassium acetate-induced swelling in vitro, which is indicative of a defect in K+/H+ exchange activity. Thus, YOL027/LETM1 are the first genes shown to encode factors involved in both K+ homeostasis and organelle volume control.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Familia de Multigenes , Enfermedades Musculares/genética , Potasio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Clonación Molecular , ADN Complementario/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes , Homeostasis , Humanos , Membranas Intracelulares/metabolismo , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Electrónica , Microscopía Fluorescente , Proteínas Mitocondriales , Datos de Secuencia Molecular , Mutación , Fenotipo , Plásmidos/metabolismo , Potasio/química , Acetato de Potasio/farmacología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Síndrome , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA