Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Inorg Chem ; 63(24): 11393-11405, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842044

RESUMEN

In this research, a range of Pt/CeO2 catalysts featuring varying Pt-O-Ce bond contents were developed by modulating the oxygen vacancies of the CeO2 support for toluene abatement. The Pt/CeO2-HA catalyst generated a maximum quantity of Pt-O-Ce bonds (possessed the strongest metal-support interaction), as evidenced by the visible Raman results, which demonstrated outstanding toluene catalytic performance. Additionally, the UV Raman results revealed that the strong metal-support interaction stimulated a substantial increase in oxygen vacancies, which could facilitate the activation of gaseous oxygen to generate abundant reactive oxygen species accumulated on the Pt/CeO2-HA catalyst surface, a conclusion supported by the H2-TPR, XPS, and toluene-TPSR results. Furthermore, the results from quasi-in situ XPS, in situ DRIFTS, and DFT indicated that the Pt/CeO2-HA catalyst with a strong metal-support interaction led to improved mobility of reactive oxygen species and lower oxygen activation energies, which could transfer a large number of activated reactive oxygen species to the reaction interface to participate in the toluene oxidation, resulting in the relatively superior catalytic performance. The approach of tuning the metal-support interaction of catalysts offers a promising avenue to develop highly active catalysts for toluene degradation.

2.
Environ Sci Technol ; 58(15): 6725-6735, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38565876

RESUMEN

It is a promising research direction to develop catalysts with high stability and ozone utilization for low-temperature ozone catalytic oxidation of VOCs. While bimetallic catalysts exhibit excellent catalytic activity compared with conventional single noble metal catalysts, limited success has been achieved in the influence of the bimetallic effect on the stability and ozone utilization of metal catalysts. Herein, it is necessary to systematically study the enhancement effect in the ozone catalytic reaction induced by the second metal. With a simple continuous impregnation method, a platinum-cerium bimetallic catalyst is prepared. Also highlighted are studies from several aspects of the contribution of the second metal (Ce) to the stability and ozone utilization of the catalysts, including the "electronic effect" and "geometric effect". The synergistic removal rate of toluene and ozone is nearly 100% at 30 °C, and it still shows positive stability after high humidity and a long reaction time. More importantly, the instructive significance, which is the in-depth knowledge of enhanced catalytic mechanism of bimetallic catalysts resulting from a second metal, is provided by this work.


Asunto(s)
Cerio , Ozono , Oxidación-Reducción , Metales , Catálisis
3.
J Environ Sci (China) ; 143: 12-22, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644010

RESUMEN

Selective catalytic NH3-to-N2 oxidation (NH3-SCO) is highly promising for abating NH3 emissions slipped from stationary flue gas after-treatment devices. Its practical application, however, is limited by the non-availability of low-cost catalysts with high activity and N2 selectivity. Here, using defect-rich nitrogen-doped carbon nanotubes (NCNT-AW) as the support, we developed a highly active and durable copper-based NH3-SCO catalyst with a high abundance of cuprous (Cu+) sites. The obtained Cu/NCNT-AW catalyst demonstrated outstanding activity with a T50 (i.e. the temperature to reach 50% NH3 conversion) of 174°C in the NH3-SCO reaction, which outperformed not only the Cu catalyst supported on N-free O-functionalized CNTs (OCNTs) or NCNT with less surface defects, but also those most active Cu catalysts in open literature. Reaction kinetics measurements and temperature-programmed surface reactions using NH3 as a probe molecule revealed that the NH3-SCO reaction on Cu/NCNT-AW follows an internal selective catalytic reaction (i-SCR) route involving nitric oxide (NO) as a key intermediate. According to mechanistic investigations by X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray absorption spectroscopy, the superior NH3-SCO performance of Cu/NCNT-AW originated from a synergy of surface defects and N-dopants. Specifically, surface defects promoted the anchoring of CuO nanoparticles on N-containing sites and, thereby, enabled efficient electron transfer from N to CuO, increasing significantly the fraction of SCR-active Cu+ sites in the catalyst. This study puts forward a new idea for manipulating and utilizing the interplay of defects and N-dopants on carbon surfaces to fabricate Cu+-rich Cu catalysts for efficient abatement of slip NH3 emissions via selective oxidation.


Asunto(s)
Amoníaco , Cobre , Oxidación-Reducción , Cobre/química , Amoníaco/química , Catálisis , Nanotubos de Carbono/química , Contaminantes Atmosféricos/química , Temperatura , Modelos Químicos
4.
Small ; 19(32): e2207118, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37058126

RESUMEN

Superhydrophobic coating has a great application prospect in self-cleaning and oil-water separation but remains challenging for large-scale preparation of robust and weather-resistant superhydrophobic coatings via facile approaches. Herein, this work reports a scalable fabrication of weather-resistant superhydrophobic coating with multiscale rough coral reef-like structures by spraying the suspension containing superhydrophobic silica nanoparticles and industrial coating varnish on various substrates. The coral reef-like structures effectively improves the surface roughness and abrasion resistance. Rapid aging experiments (3000 h) and the outdoor building project application (3000 m2 ) show that the sprayed superhydrophobic coating exhibits excellent self-cleaning properties, weather resistance, and environmental adaptability. Moreover, the combined silica-coating varnish-polyurethane (CSCP) superhydrophobic sponge exhibits exceptional oil-water separation capabilities, selectively absorbing the oils from water up to 39 times of its own weight. Furthermore, the molecular dynamics (MD) simulation reveals that the combined effect of higher surface roughness, smaller diffusion coefficient of water molecules, and weaker electrostatic interactions between water and the surface jointly determines the superhydrophobicity of the prepared coating. This work deepens the understanding of the anti-wetting mechanism of superhydrophobic surfaces from the perspective of energetic and kinetic properties, thereby paving the way for the rational design of superhydrophobic materials and their large-scale applications.

5.
Environ Sci Technol ; 57(41): 15703-15714, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37796655

RESUMEN

Volatile organic compounds (VOCs) are one of the main classes of air pollutants, and it is important to develop efficient adsorbents to remove them from the atmosphere. To do this most efficiently, we need to understand the mechanism of VOC adsorption. In this work, we described how the metal organic framework (MOF), ZIF-8, was used as a precursor to generate MOF derivatives (Zn-GC) through temperature-controlled calcination, which had adjustable metal sites and hierarchical pore structure. It was used as a model adsorbent to study the adsorption and desorption characteristics of different VOCs. Zn-GC-850 with developed pores exhibited higher adsorption performance for the benzene series, whereas Zn-GC-650 with more metal sites had a better adsorption capacity for oxygen-containing VOCs. By tuning the molecular structure of the VOCs, we revealed the adsorption mechanism of different VOCs at the molecular level. The more developed hierarchical pore structure obtained at the higher temperature facilitates the diffusion of the benzene series, and the noncovalent interaction between their methyl group(s) and the carbonized MOF derivatives improves the adsorption affinity; while the higher exposure of Zn sites obtained at lower temperature favors the adsorption of oxygen-containing VOCs by Zn-O bonds. The mass transfers of VOCs and the role of the adsorbent were simulated by multiple theoretical models. This study strengthens the basis for the design and optimization of the adsorbent and catalyst for VOCs treatment.


Asunto(s)
Estructuras Metalorgánicas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Benceno , Adsorción , Metales , Oxígeno
6.
Environ Sci Technol ; 57(1): 655-665, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36563090

RESUMEN

The application of small-pore chabazite-type SSZ-13 zeolites, key materials for the reduction of nitrogen oxides (NOx) in automotive exhausts and the selective conversion of methane, is limited by the use of expensive N,N,N-trimethyl-1-ammonium adamantine hydroxide (TMAdaOH) as an organic structure-directing agent (OSDA) during hydrothermal synthesis. Here, we report an economical and sustainable route for SSZ-13 synthesis by recycling and reusing the OSDA-containing waste liquids. The TMAdaOH concentration in waste liquids, determined by a bromocresol green colorimetric method, was found to be a key factor for SSZ-13 crystallization. The SSZ-13 zeolite synthesized under optimized conditions demonstrates similar physicochemical properties (surface area, porosity, crystallinity, Si/Al ratio, etc.) as that of the conventional synthetic approach. We then used the waste liquid-derived SSZ-13 as the parent zeolite to synthesize Cu ion-exchanged SSZ-13 (i.e., Cu-SSZ-13) for ammonia-mediated selective catalytic reduction of NOx (NH3-SCR) and observed a higher activity as well as better hydrothermal stability than Cu-SSZ-13 by conventional synthesis. In situ infrared and ultraviolet-visible spectroscopy investigations revealed that the superior NH3-SCR performance of waste liquid-derived Cu-SSZ-13 results from a higher density of Cu2+ sites coordinated to paired Al centers on the zeolite framework. The technoeconomic analysis highlights that recycling OSDA-containing waste liquids could reduce the raw material cost of SSZ-13 synthesis by 49.4% (mainly because of the higher utilization efficiency of TMAdaOH) and, meanwhile, the discharging of wastewater by 45.7%.


Asunto(s)
Zeolitas , Zeolitas/química , Oxidación-Reducción , Amoníaco/química , Óxidos de Nitrógeno/química
7.
Environ Sci Technol ; 57(9): 3467-3485, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802541

RESUMEN

It remains a major challenge to abate efficiently the harmful nitrogen oxides (NOx) in low-temperature diesel exhausts emitted during the cold-start period of engine operation. Passive NOx adsorbers (PNA), which could temporarily capture NOx at low temperatures (below 200 °C) and release the stored NOx at higher temperatures (normally 250-450 °C) to downstream selective catalytic reduction unit for complete abatement, hold promise to mitigate cold-start NOx emissions. In this review, recent advances in material design, mechanism understanding, and system integration are summarized for PNA based on palladium-exchanged zeolites. First, we discuss the choices of parent zeolite, Pd precursor, and synthetic method for the synthesis of Pd-zeolites with atomic Pd dispersions, and review the effect of hydrothermal aging on the properties and PNA performance of Pd-zeolites. Then, we show how different experimental and theoretical methodologies can be integrated to gain mechanistic insights into the nature of Pd active sites, the NOx storage/release chemistry, as well as the interactions between Pd and typical components/poisons in engine exhausts. This review also gathers several novel designs of PNA integration into modern exhaust after-treatment systems for practical application. At the end, we discuss the major challenges, as well as important implications, for the further development and real application of Pd-zeolite-based PNA in cold-start NOx mitigation.


Asunto(s)
Zeolitas , Zeolitas/química , Adsorción , Óxidos de Nitrógeno/análisis , Óxidos de Nitrógeno/química , Emisiones de Vehículos , Catálisis
8.
Environ Sci Technol ; 57(14): 5831-5840, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995339

RESUMEN

Enhancing oxygen activation through defect engineering is an effective strategy for boosting catalytic oxidation performance. Herein, we demonstrate that quenching is an effective strategy for preparing defect-rich Pt/metal oxide catalysts with superior catalytic oxidation activity. As a proof of concept, quenching of α-Fe2O3 in aqueous Pt(NO3)2 solution yielded a catalyst containing Pt single atoms and clusters over defect-rich α-Fe2O3 (Pt/Fe2O3-Q), which possessed state-of-the-art activity for toluene oxidation. Structural and spectroscopic analyses established that the quenching process created abundant lattice defects and lattice dislocations in the α-Fe2O3 support, and stronger electronic interactions between Pt species and Fe2O3 promote the generation of higher oxidation Pt species to modulate the adsorption/desorption behavior of reactants. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) characterization studies and density functional theory (DFT) calculations determined that molecular oxygen and Fe2O3 lattice oxygen were both activated on the Pt/Fe2O3-Q catalyst. Pt/CoMn2O4, Pt/MnO2, and Pt/LaFeO3 catalysts synthesized by the quenching method also offered superior catalytic activity for toluene oxidation. Results encourage the wider use of quenching for the preparation of highly active oxidation catalysts.


Asunto(s)
Óxidos , Platino (Metal) , Óxidos/química , Platino (Metal)/química , Compuestos de Manganeso , Oxígeno , Tolueno
9.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513408

RESUMEN

In the design and manufacturing of epoxy resin insulation components, complex structures can be achieved through multiple pours, thereby forming the structure of interface of laminated epoxy resin. This type of interface structure is often considered a weak link in performance which can easily accumulate charges and cause electric field distortion. However, research on the interlayer interface of epoxy resin has received little attention. In this study, epoxy samples with and without interlayer interfaces were prepared, and the space charge accumulation characteristics and trap characteristics of the samples were analyzed via pulsed electro-acoustic (PEA) and thermally stimulated depolarization current (TSDC) methods. The experimental results indicate that the Maxwell-Wagner interface polarization model cannot fully explain the charge accumulation at the interface. Due to the influence of the secondary curing, the functional groups in the post-curing epoxy resin can move and react with the partially reacted functional groups in the prefabricated epoxy resin layer, resulting in a weak cross-linking network at the interface. With the increase in temperature, the molecular chain segments in the weak cross-linked region of the interface become more active and introduce deep traps at the interface, thereby exacerbating the accumulation of interface charges. In addition, due to the influence of interface polarization and weak cross-linking, the ability of the interface charges to cause field strength distortions decreases with the increase in applied field strength. This research study can provide a theoretical reference for the interfacial space charge transport characteristics of epoxy-cured cross-linked layers and provide ideas for regulating interfacial cross-linking to suppress interfacial charge accumulation.

10.
Environ Sci Technol ; 56(14): 10095-10104, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35766897

RESUMEN

A dual-function catalyst, designated as Cu5-VWT, has been constructed for the synergistic removal of NOx and volatile organic compounds under complex coal-fired flue gas conditions. The removal of toluene, propylene, dichloromethane, and naphthalene all exceeded 99% (350 °C), and the catalyst could effectively block the generation of polycyclic aromatic hydrocarbons. Mechanistic studies have shown that Cu sites on the Cu5-VWT catalyst facilitate catalytic oxidation, while V sites facilitate NOx reduction. Thus, toluene oxidation and NOx reduction can proceed simultaneously. The removal of total hydrocarbons and nonmethane total hydrocarbons from 1200 m3·h-1 real coal-fired flue gas by a monolithic catalyst were determined as 92 and 96%, respectively, much higher than those of 54 and 72% over a commercial VWT catalyst, indicating great promise for industrial application.

11.
Environ Sci Technol ; 56(19): 14008-14018, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36099172

RESUMEN

Selective catalytic ammonia-to-dinitrogen oxidation (NH3-SCO) is highly promising for the abatement of NH3 emissions from flue gas purification devices. However, there is still a lack of high-performance and cost-effective NH3-SCO catalysts for real applications. Here, highly dispersed, electron-deficient Cu-based catalysts were fabricated using nitrogen-doped carbon nanotubes (NCNT) as support. In NH3-SCO catalysis, the Cu/NCNT outperformed Cu supported on N-free CNTs (Cu/OCNT) and on other types of supports (i.e., activated carbon, Al2O3, and zeolite) in terms of activity, selectivity to the desired product N2, and H2O resistance. Besides, Cu/NCNT demonstrated a better structural stability against oxidation and a higher NH3 storage capacity (in the presence of H2O vapor) than Cu/OCNT. Quasi in situ X-ray photoelectron spectroscopy revealed that the surface N species facilitated electron transfer from Cu to the NCNT support, resulting in electron-deficient Cu catalysts with superior redox properties, which are essential for NH3-SCO catalysis. By temperature-programmed surface reaction studies and systematic kinetic measurements, we unveiled that the NH3-SCO reaction over Cu/NCNT proceeded via the internal selective catalytic reaction (i-SCR) route; i.e., NH3 was oxidized first to NO, which then reacted with NH3 and O2 to form N2 and H2O. This study paves a new route for the design of highly active, H2O-tolerant, and low-cost Cu catalysts for the abatement of slip NH3 from stationary emissions via selective oxidation to N2.


Asunto(s)
Nanotubos de Carbono , Zeolitas , Amoníaco/química , Catálisis , Carbón Orgánico , Cobre/química , Electrones , Nitrógeno , Oxidación-Reducción , Zeolitas/química
12.
J Environ Manage ; 321: 116028, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104874

RESUMEN

Antibiotics have been recognized as emerging contaminants that are widely distributed and accumulated in aquatic environment, posing a risk to ecosystem at trace level. Constructed wetlands (CWs) have been regarded as a sustainable and cost-effective alternative for efficient elimination of antibiotics. This review summarizes the removal of 5 categories of widely used antibiotics in CWs, and discusses the roles of the key components in CW system, i.e., substrate, macrophytes, and microorganisms, in removing antibiotics. Overall, the vertical subsurface flow CWs have proven to perform better in terms of antibiotic removal (>78%) compared to other single CWs. The adsorption behavior of antibiotics in wetland substrates is determined by the physicochemical properties of antibiotics, substrate configuration and operating parameters. The effects of wetland plants on antibiotic removal mainly include direct (e.g., plant uptake and degradation) and indirect (e.g., rhizosphere processes) manners. The possible interactions between microorganisms and antibiotics include biosorption, bioaccumulation and biodegradation. The potential strategies for further enhancement of the antibiotic removal performance in CWs included optimizing operation parameters, innovating substrate, strengthening microbial activity, and integrating with other treatment technologies. Taken together, this review provides useful information for facilitating the development of feasible, innovative and intensive antibiotic removal technologies in CWs, as well as enhancing the economic viability and ecological sustainability.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Antibacterianos/metabolismo , Ecosistema , Plantas/metabolismo , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis
13.
J Environ Manage ; 319: 115771, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35982569

RESUMEN

While nanoscale zero-valent iron modified biochar (nZVI-BC) have been widely investigated for the removal of heavy metals, the corrosion products of nZVI and their interaction with heavy metals have not been revealed yet. In this paper, nZVI-BC was synthesized and applied for the removal of Cr(VI). Batch experiments indicated that the adsorption of Cr(VI) fit Langmuir isotherm, with the maximum removal capacity at 172.4 mg/g at pH 2.0. SEM-EDS, BET, XRD, FT-IR, Raman and XPS investigation suggested that reduction of Cr(VI) to Cr(III) was the major removal mechanism. pH played an important role on the corrosion of nZVI-BC, at pH 4.5 and 2.0, FeOOH and Fe3O4 were detected as the major iron oxide, respectively. Therefore, FeOOH-BC and Fe3O4-BC were further prepared and their interaction with Cr were studied. Combining with DFT calculations, it revealed that Fe3O4 has higher adsorption capacity and was responsible for the effective removal of Cr(VI) through electrostatic attraction and reduction under acidic conditions. However, Fe3O4 will continue to convert to the more stable FeOOH, which is the key to for the subsequent stabilization of the reduced Cr(III). The results showed that the oxide corrosion products of nZVI-BC were subjected to the environment, which will eventually affect the fate and transport of the adsorbed heavy metal.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cromo , Aguas del Alcantarillado , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
14.
J Environ Manage ; 321: 115848, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987051

RESUMEN

In this study, different management strategies for sewage sludge disposal were evaluated associated with environmental, energy, and economic impact, using life cycle assessment (LCA), cumulative energy demand (CED) and life cycle costing (LCC) approaches. Four scenarios, including mono-incineration, co-incineration in municipal solid wastes (MSW) incineration plant, co-incineration in coal-fired power plant and co-incineration in cement kiln, were assessed. The environmental burdens generated from the sludge incineration contributed primarily to the global warming, followed by eutrophication, marine aquatic ecotoxicity, and human toxicity potential across the four scenarios. Furthermore, mono-incineration scenario appeared to be the most environmentally unfriendly, energy and economy intensive alternative, with the LCA, CED and LCC value of 5.41E-09, 1736 MJ and 1.84 million CNY, respectively. By contrast, co-incineration in cement kiln exhibited the lowest CED (368 MJ), LCC (0.59 million CNY), and environmental burdens (1.02E-09). In addition, the sensitivity analysis indicated that four scenarios were sensitive to the changes in the electricity efficiency and the moisture content contained in sewage sludge, suggesting that it was of great significance to enhance the efficiency of sludge dewatering and thermal drying The findings of this study can provide scientific reference for selecting the optimal strategies for the most environmentally and economically friendly sewage sludge management with optimum energy efficiency.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Desecación , Humanos , Incineración , Centrales Eléctricas , Residuos Sólidos
15.
Environ Sci Technol ; 55(18): 12619-12629, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34510889

RESUMEN

Phosphorus (P) stemming from biodiesel and/or lubricant oil additives is unavoidable in real diesel exhausts and deactivates gradually the Cu-SSZ-13 zeolite catalyst for ammonia-assisted selective catalytic NOx reduction (NH3-SCR). Here, the deactivation mechanism of Cu-SSZ-13 by P-poisoning was investigated by ex situ examination of the structural changes and by in situ probing the dynamics and redox of Cu active sites via a combination of impedance spectroscopy, diffuse reflection infrared Fourier transform spectroscopy, and ultraviolet-visible spectroscopy. We unveiled that strong interactions between Cu and P led to not only a loss of Cu active sites for catalytic turnovers but also a restricted dynamic motion of Cu species during low-temperature NH3-SCR catalysis. Furthermore, the CuII ↔ CuI redox cycling of Cu sites, especially the CuI → CuII reoxidation half-cycle, was significantly inhibited, which can be attributed to the restricted Cu motion by P-poisoning disabling the formation of key dimeric Cu intermediates. As a result, the NH3-SCR activity at low temperatures (200 °C and below) decreased slightly for the mildly poisoned Cu-SSZ-13 and considerably for the severely poisoned Cu-SSZ-13.


Asunto(s)
Amoníaco , Cobre , Catálisis , Dominio Catalítico , Oxidación-Reducción , Fósforo
16.
Molecules ; 26(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206860

RESUMEN

In this paper, a combination of modification of the source and regulation of the process was used to control the degradation of PBDEs by plants and microorganisms. First, the key proteins that can degrade PBDEs in plants and microorganisms were searched in the PDB (Protein Data Bank), and a molecular docking method was used to characterize the binding ability of PBDEs to two key proteins. Next, the synergistic binding ability of PBDEs to the two key proteins was evaluated based on the queuing integral method. Based on this, three groups of three-dimensional quantitative structure-activity relationship (3D-QSAR) models of plant-microbial synergistic degradation were constructed. A total of 30 PBDE derivatives were designed using BDE-3 as the template molecule. Among them, the effect on the synergistic degradation of six PBDE derivatives, including BDE-3-4, was significantly improved (increased by more than 20%) and the environment-friendly and functional evaluation parameters were improved. Subsequently, studies on the synergistic degradation of PBDEs and their derivatives by plants and microorganisms, based on the molecular docking method, found that the addition of lipophilic groups by modification is beneficial to enhance the efficiency of synergistic degradation of PBDEs by plants and microorganisms. Further, while docking PBDEs, the number of amino acids was increased and the binding bond length was decreased compared to the template molecules, i.e., PBDE derivatives could be naturally degraded more efficiently. Finally, molecular dynamics simulation by the Taguchi orthogonal experiment and a full factorial experimental design were used to simulate the effects of various regulatory schemes on the synergistic degradation of PBDEs by plants and microorganisms. It was found that optimal regulation occurred when the appropriate amount of carbon dioxide was supplied to the plant and microbial systems. This paper aims to provide theoretical support for enhancing the synergistic degradation of PBDEs by plants and microorganisms in e-waste dismantling sites and their surrounding polluted areas, as well as, realize the research and development of green alternatives to PBDE flame retardants.


Asunto(s)
Retardadores de Llama/análisis , Éteres Difenilos Halogenados/química , Plantas/metabolismo , Contaminantes del Suelo/química , Suelo/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Bases de Datos de Proteínas , Éteres Difenilos Halogenados/análisis , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Microbiología del Suelo
17.
J Environ Sci (China) ; 101: 293-303, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33334524

RESUMEN

Ceria is widely used as a catalyst for soot combustion, but effects of Zr substitution on the reaction mechanism is ambiguous. The present work elucidates effects of Zr substitution on soot combustion over cubic fluorite-structured nanoceria. The nanostructured CeO2, Ce0.92Zr0.08O2, and Ce0.84Zr0.16O2 composed of 5-6 nm crystallites display Tm-CO2 (the temperature at maximum CO2 yield) at 383, 355, and 375°C under 10 vol.% O2/N2, respectively. The size of agglomerate decreases from 165.5 to 51.9-57.3 nm, which is beneficial for the soot-ceria contact. Moreover, Zr increases the amount of surface oxygen vacancies, generating more active oxygen (O2- and O-) for soot oxidation. Thus, the activities of Ce0.92Zr0.08O2 and Ce0.84Zr0.16O2 in soot combustion are better than that of CeO2. Although oxygen vacancies promote the migration of lattice O2-, the enriched surface Zr also inhibits the mobility of lattice O2-. Therefore, the Tm-CO2 of Ce0.84Zr0.16O2 is higher than that of Ce0.92Zr0.08O2. Based on reaction kinetic study, soot in direct contact with ceria preferentially decomposes with low activation energy, while the oxidation of isolated soot occurs through diffusion with high activation energy. The obtained findings provide new understanding on the soot combustion over nanoceria.


Asunto(s)
Cerio , Hollín , Catálisis , Oxígeno
18.
Inorg Chem ; 59(5): 3062-3071, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32049505

RESUMEN

Macroscopic Co3O4 hexagonal tubes were successfully synthesized using hollow two-dimensional (2D) MOL (metal-organic layer) single crystals as sacrificial templates. The hollow 2D MOL single crystals were prepared under hydrothermal conditions with acetonitrile (MeCN) as an interference agent. The formation of hollow-structured 2D MOL single crystals was tracked by time-dependent experiments, and two simultaneous paths-namely, the crystal-to-crystal transformation in solution and the dissolution + migration (toward the external surface) of inner crystallites-were identified as playing a key role in the formation of the unique hollow structure. The calculated change in Gibbs free energy (ΔG = -1.18 eV) indicated that the crystal-to-crystal transformation was spontaneous at 393 K. Further addition of MeCN as an interference agent eventually leads to the formation of macroscopic hexagonal tubes. Among all of the as-synthesized Co3O4, Co-MeCN-O with a hexagonal tube morphology exhibited the best catalytic performance in toluene oxidation, it achieved a toluene conversion of 90% (T90) at ∼227 °C (a space velocity of 60 000 mL g-1 h-1) and the activity energy (Ea) is 69.5 kJ mol-1. A series of characterizations were performed to investigate the structure-activity correlation. It was found that there are more structure defects, more adsorbed surface oxygen species, more surface Co3+ species, and higher reducibility at low temperatures on the Co-MeCN-O than on other Co3O4 samples; these factors are responsible for its excellent catalytic performance. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization showed that, when there is no oxygen in the atmosphere, the lattice oxygen may be involved in the activation of toluene, and the gas-phase oxygen replenished by the oxygen vacancies was essential for the total oxidation of toluene on the surface of the Co-MeCN-O catalysts, it also proves the importance of oxygen vacancies. Moreover, for the Co-MeCN-O catalysts, no obvious decrease in catalytic performance was observed after 120 h at 220 °C and it is still stable after cycling tests, which indicates that it exhibits excellent stability for toluene oxidation. This study sheds lights on the controllable synthesis of macroporous-microporous materials in single-crystalline form without an external template, and, thus, it may serve as a reference for future design and synthesis of hollow porous materials with outstanding catalytic performance.

19.
Environ Sci Technol ; 53(13): 7632-7640, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31157973

RESUMEN

Hierarchical porous carbon shows great potential for volatile organic compounds (VOCs) removal due to its high surface area and abundant porous framework. However, current fabrication protocols are complex and cause secondary pollution, limiting their application. Here, as a novel strategy, microbial lignocellulose decomposition as a pretreatment was introduced to fabricate hierarchical porous carbon (M-AC) from crude biomass substrate. The M-AC samples had high specific surface areas (maximum: 2290 m2·g-1) and surfaces characterized by needle-like protrusions with a high degree of disorder attributed to hierarchical porous structures. Dynamic toluene adsorption indicated that the carbon materials with microbial pretreatment had much better adsorption performances (maximum: 446 mg/g) than activated carbon without pretreatment. The M-AC material pretreated with a cellulose-degrading microbe showed the best adsorption capacity due to well-developed micropores, whereas the M-AC material pretreated with a lignin-degrading microbe showed excellent transport diffusion due to well-developed mesopores. Therefore, this simple and effective approach using microbial decomposition pretreatment is promising for the development of hierarchical porous carbons with adjustable pore structures and high specific surface areas to remove target VOCs in practical applications.


Asunto(s)
Carbón Orgánico , Tolueno , Adsorción , Biomasa , Porosidad
20.
J Environ Sci (China) ; 75: 136-144, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30473278

RESUMEN

Herein, we reported the synthesis of well-defined Co3O4 nanoarrays (NAs) supported on a monolithic three-dimensional macroporous nickel (Ni) foam substrate for use in high-efficiency CO oxidation. The monolithic Co3O4 NAs catalysts were obtained through a generic hydrothermal synthesis route with subsequent calcination. By controlling the reaction time, solvent polarity and deposition agent, these Co3O4 NAs catalysts exhibited various novel morphologies (single or hybrid arrays), whose physicochemical properties were further characterized by using several analytical techniques. Based on the catalytic and characterization analyses, it was found that the Co3O4 NAs-6 catalyst with nanobrush and nanomace arrays displayed enhanced catalytic activity for CO oxidation, achieving an efficient 100% CO oxidation conversion at a gas hourly space velocity (GHSV) 10,000hr-1 and 150°C with long-term stability. Compared with the other Co3O4 NAs catalysts, it had the highest abundance of surface-adsorbed oxygen species, excellent low-temperature reducibility and was rich in surface-active sites (Co3+/Co2+=1.26).


Asunto(s)
Monóxido de Carbono/química , Cobalto/química , Modelos Químicos , Níquel/química , Óxidos/química , Adsorción , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA