Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(40): e2304096120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748052

RESUMEN

Eight extant species of pangolins are currently recognized. Recent studies found that two mitochondrial haplotypes identified in confiscations in Hong Kong could not be assigned to any known pangolin species, implying the existence of a species. Here, we report that two additional mitochondrial haplotypes identified in independent confiscations from Yunnan align with the putative species haplotypes supporting the existence of this mysterious species/population. To verify the new species scenario we performed a comprehensive analysis of scale characteristics and 138 whole genomes representing all recognized pangolin species and the cryptic new species, 98 of which were generated here. Our morphometric results clearly attributed this cryptic species to Asian pangolins (Manis sp.) and the genomic data provide robust and compelling evidence that it is a pangolin species distinct from those recognized previously, which separated from the Philippine pangolin and Malayan pangolin over 5 Mya. Our study provides a solid genomic basis for its formal recognition as the ninth pangolin species or the fifth Asian one, supporting a new taxonomic classification of pangolins. The effects of glacial climate changes and recent anthropogenic activities driven by illegal trade are inferred to have caused its population decline with the genomic signatures showing low genetic diversity, a high level of inbreeding, and high genetic load. Our finding greatly expands current knowledge of pangolin diversity and evolution and has vital implications for conservation efforts to prevent the extinction of this enigmatic and endangered species from the wild.


Asunto(s)
Genómica , Pangolines , Animales , Efectos Antropogénicos , Asia , China , Pangolines/genética , Crecimiento Demográfico
2.
Genes (Basel) ; 14(9)2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37761818

RESUMEN

With the emergence of high-throughput sequencing technology, a number of non-avian reptile species have been sequenced at the genome scale, shedding light on various scientific inquiries related to reptile ecology and evolution. However, the routine requirement of tissue or blood samples for genome sequencing often poses challenges in many elusive reptiles, hence limiting the application of high-throughput sequencing technologies to reptile studies. An alternative reptilian DNA resource suitable for genome sequencing is in urgent need. Here, we used the corn snake (Pantherophis guttatus) as a reptile model species to demonstrate that the shed skin is a high-quality DNA source for genome sequencing. Skin sheds provide a noninvasive type of sample that can be easily collected without restraining or harming the animal. Our findings suggest that shed skin from corn snakes yields DNA of sufficient quantity and quality that are comparable to tissue DNA extracts. Genome sequencing data analysis revealed that shed skin DNA is subject to bacteria contamination at variable levels, which is a major issue related to shed skin DNA and may be addressed by a modified DNA extraction method through introduction of a 30 min pre-digestion step. This study provides an enhanced method for the use of reptile shed skins as a high-quality DNA source for whole genome sequencing. Utilizing shed skin DNA enables researchers to overcome the limitations generally associated with obtaining traditional tissue or blood samples and promises to facilitate the application of genome sequencing in reptilian research.


Asunto(s)
Genoma , Reptiles , Animales , Reptiles/genética , Mapeo Cromosómico , Genoma/genética , Secuencia de Bases , ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA