Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.257
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genomics Hum Genet ; 25(1): 259-285, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38669479

RESUMEN

Healthy sleep is vital for humans to achieve optimal health and longevity. Poor sleep and sleep disorders are strongly associated with increased morbidity and mortality. However, the importance of good sleep continues to be underrecognized. Mechanisms regulating sleep and its functions in humans remain mostly unclear even after decades of dedicated research. Advancements in gene sequencing techniques and computational methodologies have paved the way for various genetic analysis approaches, which have provided some insights into human sleep genetics. This review summarizes our current knowledge of the genetic basis underlying human sleep traits and sleep disorders. We also highlight the use of animal models to validate genetic findings from human sleep studies and discuss potential molecular mechanisms and signaling pathways involved in the regulation of human sleep.


Asunto(s)
Trastornos del Sueño-Vigilia , Sueño , Humanos , Trastornos del Sueño-Vigilia/genética , Sueño/genética , Animales , Transducción de Señal/genética
2.
Plant Cell ; 36(7): 2531-2549, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526222

RESUMEN

Histospecification and morphogenesis of anthers during development in Arabidopsis (Arabidopsis thaliana) are well understood. However, the regulatory mechanism of microsporocyte generation at the pre-meiotic stage remains unclear, especially how archesporial cells are specified and differentiate into 2 cell lineages with distinct developmental fates. SPOROCYTELESS (SPL) is a key reproductive gene that is activated during early anther development and remains active. In this study, we demonstrated that the EAR motif-containing adaptor protein (ECAP) interacts with the Gro/Tup1 family corepressor LEUNIG (LUG) and the BES1/BZR1 HOMOLOG3 (BEH3) transcription factor to form a transcription activator complex, epigenetically regulating SPL transcription. SPL participates in microsporocyte generation by modulating the specification of archesporial cells and the archesporial cell-derived differentiation of somatic and reproductive cell layers. This study illustrates the regulation of SPL expression by the ECAP-LUG-BEH3 complex, which is essential for the generation of microsporocytes. Moreover, our findings identified ECAP as a key transcription regulator that can combine with different partners to regulate gene expression in distinct ways, thereby facilitating diverse processes in various aspects of plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares , Polen/genética , Polen/metabolismo , Polen/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 121(9): e2320276121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381789

RESUMEN

Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.


Asunto(s)
Neuropéptidos , Sueño , Humanos , Sueño/fisiología , Puente/fisiología , Locus Coeruleus/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(32): e2303439121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39093948

RESUMEN

Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.


Asunto(s)
Metaboloma , Microbiota , Rizosfera , Microbiología del Suelo , Microbiota/fisiología , Nitrógeno/metabolismo , ARN Ribosómico 16S/genética , Nutrientes/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Suelo/química , Fósforo/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Panicum/metabolismo , Panicum/microbiología
5.
PLoS Biol ; 21(7): e3002197, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410725

RESUMEN

Drosophila melanogaster Down syndrome cell adhesion molecule 1 (Dscam1) encodes 19,008 diverse ectodomain isoforms via the alternative splicing of exon 4, 6, and 9 clusters. However, whether individual isoforms or exon clusters have specific significance is unclear. Here, using phenotype-diversity correlation analysis, we reveal the redundant and specific roles of Dscam1 diversity in neuronal wiring. A series of deletion mutations were performed from the endogenous locus harboring exon 4, 6, or 9 clusters, reducing to 396 to 18,612 potential ectodomain isoforms. Of the 3 types of neurons assessed, dendrite self/non-self discrimination required a minimum number of isoforms (approximately 2,000), independent of exon clusters or isoforms. In contrast, normal axon patterning in the mushroom body and mechanosensory neurons requires many more isoforms that tend to associate with specific exon clusters or isoforms. We conclude that the role of the Dscam1 diversity in dendrite self/non-self discrimination is nonspecifically mediated by its isoform diversity. In contrast, a separate role requires variable domain- or isoform-related functions and is essential for other neurodevelopmental contexts, such as axonal growth and branching. Our findings shed new light on a general principle for the role of Dscam1 diversity in neuronal wiring.


Asunto(s)
Síndrome de Down , Proteínas de Drosophila , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Síndrome de Down/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neuronas/metabolismo
6.
EMBO Rep ; 25(2): 770-795, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182816

RESUMEN

DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.


Asunto(s)
Adenina , Infecciones Bacterianas , Receptor Toll-Like 2 , Animales , Ratones , Adenina/análogos & derivados , Inflamación/genética , Metiltransferasas/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
7.
Proc Natl Acad Sci U S A ; 120(15): e2221686120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014857

RESUMEN

Sleep is essential for our well-being, and chronic sleep deprivation has unfavorable health consequences. We recently demonstrated that two familial natural short sleep (FNSS) mutations, DEC2-P384R and Npsr1-Y206H, are strong genetic modifiers of tauopathy in PS19 mice, a model of tauopathy. To gain more insight into how FNSS variants modify the tau phenotype, we tested the effect of another FNSS gene variant, Adrb1-A187V, by crossing mice with this mutation onto the PS19 background. We found that the Adrb1-A187V mutation helped restore rapid eye movement (REM) sleep and alleviated tau aggregation in a sleep-wake center, the locus coeruleus (LC), in PS19 mice. We found that ADRB1+ neurons in the central amygdala (CeA) sent projections to the LC, and stimulating CeAADRB1+ neuron activity increased REM sleep. Furthermore, the mutant Adrb1 attenuated tau spreading from the CeA to the LC. Our findings suggest that the Adrb1-A187V mutation protects against tauopathy by both mitigating tau accumulation and attenuating tau spreading.


Asunto(s)
Trastornos del Sueño-Vigilia , Tauopatías , Ratones , Animales , Sueño REM , Tauopatías/genética , Sueño/fisiología , Locus Coeruleus/metabolismo , Receptores Adrenérgicos , Proteínas tau/genética , Proteínas tau/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
8.
Proc Natl Acad Sci U S A ; 120(34): e2217957120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590409

RESUMEN

To ensure optimal growth, plants actively regulate their growth and development based on environmental changes. Among these, salt stress significantly influences growth and yield. In this study, we demonstrate that the growth of root hairs of salt-stressed Arabidopsis thaliana seedlings is regulated by the SALT OVERLY SENSITIVE 2 (SOS2)-GUANOSINE NUCLEOTIDE DIPHOSPHATE DISSOCIATION INHIBITOR 1 (RhoGDI1)-Rho GTPASE OF PLANTS 2 (ROP2) module. We show here that the kinase SOS2 is activated by salt stress and subsequently phosphorylates RhoGDI1, a root hair regulator, thereby decreasing its stability. This change in RhoGDI1 abundance resulted in a fine-tuning of polar localization of ROP2 and root hair initiation followed by polar growth, demonstrating how SOS2-regulated root hair development is critical for plant growth under salt stress. Our results reveal how a tissue-specific response to salt stress balances the relationship of salt resistance and basic growth.


Asunto(s)
Arabidopsis , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Fosforilación , Guanosina Difosfato , Estrés Salino
9.
J Biol Chem ; 300(6): 107288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636662

RESUMEN

HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain, and epilepsy. Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level. The results of our study could help to design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.


Asunto(s)
Microscopía por Crioelectrón , AMP Cíclico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Humanos , Sitios de Unión , AMP Cíclico/metabolismo , Células HEK293 , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Conformación Proteica
10.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314989

RESUMEN

Rho of plant (ROP) proteins and the interactor of constitutively active ROP (ICR) family member ICR5/MIDD1 have been implicated to function as signaling modules that regulate metaxylem secondary cell wall patterning. Yet, loss-of-function mutants of ICR5 and its closest homologs have not been studied and, hence, the functions of these ICR family members are not fully established. Here, we studied the functions of ICR2 and its homolog ICR5. We show that ICR2 is a microtubule-associated protein that affects microtubule dynamics. Secondary cell wall pits in the metaxylem of Arabidopsis icr2 and icr5 single mutants and icr2 icr5 double mutants are smaller than those in wild-type Col-0 seedlings; however, they are remarkably denser, implying a complex function of ICRs in secondary cell wall patterning. ICR5 has a unique function in protoxylem secondary cell wall patterning, whereas icr2, but not icr5, mutants develop split root hairs, demonstrating functional diversification. Taken together, our results show that ICR2 and ICR5 have unique and cooperative functions as microtubule-associated proteins and as ROP effectors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo
11.
Plant Physiol ; 195(1): 356-369, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227494

RESUMEN

Actin dynamics are critical for plant cell morphogenesis, but the underlying signaling mechanisms regulating these dynamics are not well understood. Here, we established that PLEIOTROPIC REGULATORY LOCUS1 (PRL1) modulates leaf pavement cell (PC) morphogenesis in Arabidopsis (Arabidopsis thaliana) by maintaining the dynamic homeostasis of actin microfilaments (MF). Our previous studies indicated that PC shape was determined by antagonistic RHO-RELATED GTPase FROM PLANTS 2 (ROP2) and RHO-RELATED GTPase FROM PLANTS 6 (ROP6) signaling pathways that promote cortical MF and microtubule organization, respectively. Our genetic screen for additional components in ROP6-mediated signaling identified prl1 alleles. Genetic analysis confirmed that PRL1 plays a key role in PC morphogenesis. Mutations in PRL1 caused cortical MF depolymerization, resulting in defective PC morphogenesis. Further genetic analysis revealed that PRL1 is epistatic to ROP2 and ROP6 in PC morphogenesis. Mutations in PRL1 enhanced the effects of ROP2 and ROP6 in PC morphogenesis, leading to a synergistic phenotype in the PCs of ROP2 prl1 and ROP6 prl1. Furthermore, the activities of ROP2 and ROP6 were differentially altered in prl1 mutants, suggesting that ROP2 and ROP6 function downstream of PRL1. Additionally, cortical MF depolymerization in prl1 mutants occurred independently of ROP2 and ROP6, implying that these proteins impact PC morphogenesis in the prl1 mutant through other cellular processes. Our research indicates that PRL1 preserves the structural integrity of actin and facilitates pavement cell morphogenesis in Arabidopsis.


Asunto(s)
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al GTP , Proteínas de Unión al GTP Monoméricas , Morfogénesis , Mutación , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morfogénesis/genética , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Transducción de Señal
12.
Ann Neurol ; 96(1): 194-203, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661030

RESUMEN

OBJECTIVE: Primary angiitis of the central nervous system (PACNS) is a rare vasculitis restricted to the brain, spinal cord, and leptomeninges. This study aimed to describe the imaging characteristics of patients with small vessel PACNS (SV-PACNS) using 7 T magnetic resonance imaging (MRI). METHODS: This ongoing prospective observational cohort study included patients who met the Calabrese and Mallek criteria and underwent 7 T MRI scan. The MRI protocol includes T1-weighted magnetization-prepared rapid gradient echo imaging, T2 star weighted imaging, and susceptibility-weighted imaging. Two experienced readers independently reviewed the neuroimages. Clinical data were extracted from the electronic patient records. The findings were then applied to a cohort of patients with large vessel central nervous system (CNS) vasculitis. RESULTS: We included 21 patients with SV-PACNS from December 2021 to November 2023. Of these, 12 (57.14%) had cerebral cortical microhemorrhages with atrophy. The pattern with microhemorrhages was described in detail based on the gradient echo sequence, leading to the identification of what we have termed the "coral-like sign." The onset age of patients with coral-like sign (33.83 ± 9.93 years) appeared younger than that of patients without coral-like sign (42.11 ± 14.18 years) (P = 0.131). Furthermore, the cerebral lesions in patients with cortical microhemorrhagic SV-PACNS showed greater propensity toward bilateral lesions (P = 0.03). The coral-like sign was not observed in patients with large vessel CNS vasculitis. INTERPRETATION: The key characteristics of the coral-like sign represent cerebral cortical diffuse microhemorrhages with atrophy, which may be an important MRI pattern of SV-PACNS. ANN NEUROL 2024;96:194-203.


Asunto(s)
Imagen por Resonancia Magnética , Vasculitis del Sistema Nervioso Central , Humanos , Masculino , Femenino , Vasculitis del Sistema Nervioso Central/diagnóstico por imagen , Vasculitis del Sistema Nervioso Central/patología , Vasculitis del Sistema Nervioso Central/complicaciones , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/patología , Adulto Joven , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Estudios de Cohortes , Adolescente
13.
Ann Neurol ; 95(5): 901-906, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400794

RESUMEN

We determined the genetic association between specific human leucocyte antigen (HLA) loci and autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. Our results showed that autoimmune GFAP astrocytopathy was associated with HLA-A*3303 (odds ratio [OR] = 2.02, 95% confidence interval [CI] = 1.32-3.06, p = 0.00072, padj. = 0.046) and HLA-DBP1*0501 (OR = 0.51, 95% CI = 0.36-0.71, p = 0.000048, padj. = 0.0062). Moreover, HLA-A*3303 carriers with the disease had a longer hospital stay (p = 0.0005) than non-carriers. This study for the first time provides evidence for a role of genetic factor in the development of autoimmune GFAP astrocytopathy. ANN NEUROL 2024;95:901-906.


Asunto(s)
Astrocitos , Proteína Ácida Fibrilar de la Glía , Antígenos HLA-A , Cadenas beta de HLA-DP , Humanos , Proteína Ácida Fibrilar de la Glía/genética , Masculino , Femenino , Persona de Mediana Edad , Cadenas beta de HLA-DP/genética , Adulto , Antígenos HLA-A/genética , Astrocitos/metabolismo , Astrocitos/patología , Anciano
14.
Cell ; 143(1): 99-110, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20887895

RESUMEN

Auxin is a multifunctional hormone essential for plant development and pattern formation. A nuclear auxin-signaling system controlling auxin-induced gene expression is well established, but cytoplasmic auxin signaling, as in its coordination of cell polarization, is unexplored. We found a cytoplasmic auxin-signaling mechanism that modulates the interdigitated growth of Arabidopsis leaf epidermal pavement cells (PCs), which develop interdigitated lobes and indentations to form a puzzle-piece shape in a two-dimensional plane. PC interdigitation is compromised in leaves deficient in either auxin biosynthesis or its export mediated by PINFORMED 1 localized at the lobe tip. Auxin coordinately activates two Rho GTPases, ROP2 and ROP6, which promote the formation of complementary lobes and indentations, respectively. Activation of these ROPs by auxin occurs within 30 s and depends on AUXIN-BINDING PROTEIN 1. These findings reveal Rho GTPase-based auxin-signaling mechanisms, which modulate the spatial coordination of cell expansion across a field of cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Unión al GTP/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal , Membrana Celular/metabolismo , Forma de la Célula , Hojas de la Planta/citología , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo
15.
Mol Cell Proteomics ; 22(6): 100567, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37172717

RESUMEN

Nasopharyngeal carcinoma (NPC), a malignant tumor distinctly characterized by ethnic and geographic distribution, is highly prevalent in Southern China and Southeast Asia. However, the molecular mechanisms of NPC have not been fully revealed at the proteomic level. In this study, 30 primary NPC samples and 22 normal nasopharyngeal epithelial tissues were collected for proteomics analysis, and a relatively complete proteomics landscape of NPC was depicted for the first time. By combining differential expression analysis, differential co-expression analysis, and network analysis, potential biomarkers and therapeutic targets were identified. Some identified targets were verified by biological experiments. We found that 17-AAG, a specific inhibitor of the identified target heat shock protein 90 (HSP90), could be a potential therapeutic drug for NPC. Finally, consensus clustering identified two NPC subtypes with specific molecular features. The subtypes and the related molecules were verified by an independent data set and may have different progression-free survival. The results of this study provide a comprehensive understanding of the proteomics molecular signatures of NPC and provide new perspectives and inspiration for prognostic determination and treatment of NPC.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(34): e2203266119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35901245

RESUMEN

Sleep is a necessity for our survival, but its regulation remains incompletely understood. Here, we used a human sleep duration gene to identify a population of cells in the peri-tegmental reticular nucleus (pTRNADRB1) that regulate sleep-wake, uncovering a role for a poorly understood brain area. Although initial ablation in mice led to increased wakefulness, further validation revealed that pTRNADRB1 neuron stimulation strongly promotes wakefulness, even after stimulation offset. Using combinatorial genetics, we found that excitatory pTRNADRB1 neurons promote wakefulness. pTRN neurons can be characterized as anterior- or posterior-projecting neurons based on multiplexed analysis of projections by sequencing (MAPseq) analysis. Finally, we found that pTRNADRB1 neurons promote wakefulness, in part, through projections to the lateral hypothalamus. Thus, human genetic information from a human sleep trait allowed us to identify a role for the pTRN in sleep-wake regulation.


Asunto(s)
Sueño , Tegmento Mesencefálico , Vigilia , Animales , Humanos , Área Hipotalámica Lateral/fisiología , Ratones , Neuronas/fisiología , Sueño/fisiología , Tegmento Mesencefálico/fisiología , Vigilia/fisiología
17.
Proc Natl Acad Sci U S A ; 119(51): e2211193119, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36520670

RESUMEN

An interplay of geometrical frustration and strong quantum fluctuations in a spin-1/2 triangular-lattice antiferromagnet (TAF) can lead to exotic quantum states. Here, we report the neutron-scattering, magnetization, specific heat, and magnetocaloric studies of the recently discovered spin-1/2 TAF Na2BaCo(PO4)2, which can be described by a spin-1/2 easy axis XXZ model. The zero-field neutron diffraction experiment reveals an incommensurate antiferromagnetic ground state with a significantly reduced ordered moment of about 0.54(2) µB/Co. Different magnetic phase diagrams with magnetic fields in the ab plane and along the easy c-axis were extracted based on the magnetic susceptibility, specific heat, and elastic neutron-scattering results. In addition, two-dimensional (2D) spin dispersion in the triangular plane was observed in the high-field polarized state, and microscopic exchange parameters of the spin Hamiltonian have been determined through the linear spin wave theory. Consistently, quantum critical behaviors with the universality class of d = 2 and νz = 1 were established in the vicinity of the saturation field, where a Bose-Einstein condensation (BEC) of diluted magnons occurs. The newly discovered quantum criticality and fractional magnetization phase in this ideal spin-1/2 TAF present exciting opportunities for exploring exotic quantum phenomena.

18.
Med Res Rev ; 44(3): 1221-1266, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38204140

RESUMEN

Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.


Asunto(s)
Agaricales , Productos Biológicos , Ganoderma , Humanos , Terpenos/farmacología , Terpenos/química , Ganoderma/química , Productos Biológicos/farmacología , Estructura Molecular
19.
J Struct Biol ; : 108117, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153560

RESUMEN

The complement system is a complex network of proteins that plays a crucial role in the innate immune response. One important component of this system is the C5a-C5aR1 complex, which is critical in the recruitment and activation of immune cells. In-depth investigation of the activation mechanism as well as biased signaling of the C5a-C5aR1 system will facilitate the elucidation of C5a-mediated pathophysiology. In this study, we determined the structure of C5a-C5aR1-Gi complex at a high resolution of 3 Šusing cryo-electron microscopy (Cryo-EM). Our results revealed the binding site of C5a, which consists of a polar recognition region on the extracellular side and an amphipathic pocket within the transmembrane domain. Furthermore, we found that C5a binding induces conformational changes of C5aR1, which subsequently leads to the activation of G protein signaling pathways. Notably, a key residue (M265) located on transmembrane helix 6 (TM6) was identified to play a crucial role in regulating the recruitment of ß-arrestin driven by C5a. This study provides more information about the structure and function of the human C5a-C5aR1 complex, which is essential for the proper functioning of the complement system. The findings of this study can also provide a foundation for the design of new pharmaceuticals targeting this receptor with bias or specificity.

20.
J Am Chem Soc ; 146(9): 5901-5907, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408315

RESUMEN

Manipulating the chirality of the spin-polarized electronic state is pivotal for understanding many unusual quantum spin phenomena, but it has not been achieved at the single-molecule level. Here, using scanning tunneling microscopy and spectroscopy (STM/STS), we successfully manipulate the chirality of spin distribution in a triple-decker single-molecule magnet tris(phthalocyaninato)bis(terbium(III)) (Tb2Pc3), which is evaporated on a Pb(111) substrate via molecular beam epitaxy. The otherwise achiral Tb2Pc3 becomes chiral after being embedded into the self-assembled monolayer films of bis(phthalocyaninato)terbium(III) (TbPc2). The chirality of the spin distribution in Tb2Pc3 is manifested via the spatial mapping of its Kondo resonance state from its ligand orbital. Our first-principles calculations revealed that the spin and molecular chirality are associated with a small rotation followed by a structural distortion of the top Pc, consistent with the experimental observation. By constructing tailored molecular clusters with the STM tip, a single Tb2Pc3 molecule can be manipulated among achiral and differently handed chiral configurations of spin distributions reversibly. This paves the way for designing chiral spin enantiomers for fundamental studies and developing functional spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA