Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(3): 393-403, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599353

RESUMEN

The positive transcription elongation factor b (P-TEFb) is composed of cyclins T1 or T2 and cyclin-dependent kinase 9 that regulate the elongation phase of transcription by RNA polymerase II. By antagonizing negative elongation factors and phosphorylating the C-terminal domain of RNA polymerase II, P-TEFb facilitates the elongation and co-transcriptional processing of nascent transcripts. This step is critical for the expression of most eukaryotic genes. In growing cells, P-TEFb is regulated negatively by its reversible associations with HEXIM1/2 in the 7SK snRNP and positively by a number of transcription factors, as well as the super elongation complex. In resting cells, P-TEFb falls apart, and cyclin T1 is degraded by the proteasome. This complex regulation of P-TEFb has evolved for the precise temporal and spatial regulation of gene expression in the organism. Its dysregulation contributes to inflammatory and neoplastic conditions.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II , Humanos , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células HeLa , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Transcripción Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Mol Cell ; 74(2): 254-267.e10, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30824372

RESUMEN

DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Apoptosis/genética , Supervivencia Celular/genética , Daño del ADN/genética , Células HEK293 , Humanos , ARN Largo no Codificante/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
3.
PLoS Pathog ; 20(4): e1012172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662769

RESUMEN

The implementation of antiretroviral therapy (ART) has effectively restricted the transmission of Human Immunodeficiency Virus (HIV) and improved overall clinical outcomes. However, a complete cure for HIV remains out of reach, as the virus persists in a stable pool of infected cell reservoir that is resistant to therapy and thus a main barrier towards complete elimination of viral infection. While the mechanisms by which host proteins govern viral gene expression and latency are well-studied, the emerging regulatory functions of non-coding RNAs (ncRNA) in the context of T cell activation, HIV gene expression and viral latency have not yet been thoroughly explored. Here, we report the identification of the Cytoskeleton Regulator (CYTOR) long non-coding RNA (lncRNA) as an activator of HIV gene expression that is upregulated following T cell stimulation. Functional studies show that CYTOR suppresses viral latency by directly binding to the HIV promoter and associating with the cellular positive transcription elongation factor (P-TEFb) to activate viral gene expression. CYTOR also plays a global role in regulating cellular gene expression, including those involved in controlling actin dynamics. Depletion of CYTOR expression reduces cytoplasmic actin polymerization in response to T cell activation. In addition, treating HIV-infected cells with pharmacological inhibitors of actin polymerization reduces HIV gene expression. We conclude that both direct and indirect effects of CYTOR regulate HIV gene expression.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH , VIH-1 , ARN Largo no Codificante , Latencia del Virus , Humanos , Infecciones por VIH/virología , Infecciones por VIH/genética , VIH-1/genética , VIH-1/fisiología , Células Jurkat , Activación de Linfocitos , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética
4.
Mol Cell ; 62(1): 34-46, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058786

RESUMEN

Studying cancer metabolism gives insight into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a melanoma tumor suppressor that responds to nucleotide stress. HEXIM1 expression is low in melanoma. Its overexpression in a zebrafish melanoma model suppresses cancer formation, while its inactivation accelerates tumor onset in vivo. Knockdown of HEXIM1 rescues zebrafish neural crest defects and human melanoma proliferation defects that arise from nucleotide depletion. Under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to inhibit elongation at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic RNAs to bind to and be stabilized by HEXIM1. HEXIM1 plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals an important role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma.


Asunto(s)
Melanoma/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Pirimidinas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Melanoma/patología , Melanoma Experimental , Proteínas Oncogénicas/genética , Factores de Transcripción , Transcripción Genética , Proteínas Supresoras de Tumor/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Nucleic Acids Res ; 50(9): 5000-5013, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35524561

RESUMEN

P-TEFb, composed of CycT1 and CDK9, regulates the elongation of transcription by RNA polymerase II. In proliferating cells, it is regulated by 7SK snRNA in the 7SK snRNP complex. In resting cells, P-TEFb is absent, because CycT1 is dephosphorylated, released from CDK9 and rapidly degraded. In this study, we identified the mechanism of this degradation. We mapped the ubiquitination and degradation of free CycT1 to its N-terminal region from positions 1 to 280. This region is ubiquitinated at six lysines, where E3 ligases Siah1 and Siah2 bind and degrade these sequences. Importantly, the inhibition of Siah1/2 rescued the expression of free CycT1 in proliferating as well as resting primary cells. We conclude that Siah1/2 are the E3 ligases that bind and degrade the dissociated CycT1 in resting, terminally differentiated, anergic and/or exhausted cells.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , Factores de Transcripción , Ubiquitina-Proteína Ligasas/metabolismo , Fenómenos Fisiológicos Celulares , Ciclina T/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño , Factores de Transcripción/metabolismo , Transcripción Genética
6.
PLoS Pathog ; 16(3): e1008430, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32176734

RESUMEN

Recent efforts have been paid to identify previously unrecognized HIV-1 latency-promoting genes (LPGs) that can potentially be targeted for eradication of HIV-1 latent reservoirs. From our earlier orthologous RNAi screens of host factors regulating HIV-1 replication, we identified that the nucleolar protein NOP2/NSUN1, a m5C RNA methyltransferase (MTase), is an HIV-1 restriction factor. Loss- and gain-of-function analyses confirmed that NOP2 restricts HIV-1 replication. Depletion of NOP2 promotes the reactivation of latently infected HIV-1 proviruses in multiple cell lines as well as primary CD4+ T cells, alone or in combination with latency-reversing agents (LRAs). Mechanistically, NOP2 associates with HIV-1 5' LTR, interacts with HIV-1 TAR RNA by competing with HIV-1 Tat protein, as well as contributes to TAR m5C methylation. RNA MTase catalytic domain (MTD) of NOP2 mediates its competition with Tat and binding with TAR. Overall, these findings verified that NOP2 suppresses HIV-1 transcription and promotes viral latency.


Asunto(s)
Metilación de ADN , ADN Viral/metabolismo , Duplicado del Terminal Largo de VIH , VIH-1/fisiología , Proteínas Nucleares/metabolismo , ARN Viral/metabolismo , Transcripción Genética , Latencia del Virus/fisiología , ARNt Metiltransferasas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Células Jurkat
7.
PLoS Pathog ; 14(11): e1007402, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30395647

RESUMEN

Transcription of HIV provirus is a key step of the viral cycle, and depends on the recruitment of the cellular positive transcription elongation factor b (P-TEFb) to the HIV promoter. The viral transactivator Tat can displace P-TEFb from the 7SK small nuclear ribonucleoprotein, where it is bound and inactivated by HEXIM1, and bring it to TAR, which allows the stalled RNA polymerase II to transition to successful transcription elongation. In this study, we designed a chimeric inhibitor of HIV transcription by combining functional domains from HEXIM1 and Tat. The chimera (HT1) potently inhibited gene expression from the HIV promoter, by competing with Tat for TAR and P-TEFb binding, while keeping the latter inactive. HT1 inhibited spreading infection as well as viral reactivation in lymphocyte T cell line models of HIV latency, with little effect on cellular transcription and metabolism. This proof-of-concept study validates an innovative approach to interfering with HIV transcription via peptide mimicry and competition for RNA-protein interactions. HT1 represents a new candidate for HIV therapy, or HIV cure via the proposed block and lock strategy.


Asunto(s)
Infecciones por VIH/terapia , VIH-1/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Replicación Viral/fisiología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Duplicado del Terminal Largo de VIH , Seropositividad para VIH , VIH-1/genética , VIH-1/metabolismo , Células HeLa , Humanos , Células Jurkat , Provirus/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/genética , Factores de Transcripción , Latencia del Virus , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
8.
Molecules ; 25(4)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075058

RESUMEN

The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb's involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.


Asunto(s)
Infecciones por VIH/genética , Factor B de Elongación Transcripcional Positiva/genética , Transcripción Genética/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Regulación Viral de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Humanos , Factor B de Elongación Transcripcional Positiva/antagonistas & inhibidores
9.
J Biol Chem ; 293(14): 4993-5004, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463681

RESUMEN

Autoimmune regulator (AIRE) and nuclear factor-κB (NF-κB) are transcription factors (TFs) that direct the expression of individual genes and gene clusters. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that recognizes and binds to acetylated histones. BRD4 also has been reported to promote interactions between the positive transcription elongation factor b (P-TEFb) and AIRE or P-TEFb and NF-κB subunit p65. Here, we report that AIRE and p65 bind to P-TEFb independently of BRD4. JQ1, a compound that disrupts interactions between BRD4 and acetylated proteins, does not decrease transcriptional activities of AIRE or p65. Moreover, siRNA-mediated inactivation of BRD4 alone or in combination with JQ1 had no effects on AIRE- and NF-κB-targeted genes on plasmids and in chromatin and on interactions between P-TEFb and AIRE or NF-κB. Finally, ChIP experiments revealed that recruitment of P-TEFb to AIRE or p65 to transcription complexes was independent of BRD4. We conclude that direct interactions between AIRE, NF-κB, and P-TEFb result in efficient transcription of their target genes.


Asunto(s)
Proteínas Nucleares/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas de Ciclo Celular , Eliminación de Gen , Células HEK293 , Humanos , Insulina/genética , Proteínas Nucleares/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas , Interferencia de ARN , Factores de Transcripción/genética , Proteína AIRE
10.
Retrovirology ; 16(1): 16, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31238957

RESUMEN

BACKGROUND: The human immunodeficiency virus (HIV) cell reservoir is currently a main obstacle towards complete eradication of the virus. This infected pool is refractory to anti-viral therapy and harbors integrated proviruses that are transcriptionally repressed but replication competent. As transcription silencing is key for establishing the HIV reservoir, significant efforts have been made to understand the mechanism that regulate HIV gene transcription, and the role of the elongation machinery in promoting this step. However, while the role of the super elongation complex (SEC) in enhancing transcription activation of HIV is well established, the function of SEC in modulating viral latency is less defined and its cell partners are yet to be identified. RESULTS: In this study we identify fused in sarcoma (FUS) as a partner of AFF4 in cells. FUS inhibits the activation of HIV transcription by AFF4 and ELL2, and silences overall HIV gene transcription. Concordantly, depletion of FUS elevates the occupancy of AFF4 and Cdk9 on the viral promoter and activates HIV gene transcription. Live cell imaging demonstrates that FUS co-localizes with AFF4 within nuclear punctuated condensates, which are disrupted upon treating cells with aliphatic alcohol. In HIV infected cells, knockout of FUS delays the gradual entry of HIV into latency, and similarly promotes viral activation in a T cell latency model that is treated with JQ1. Finally, effects of FUS on HIV gene transcription are also exhibited genome wide, where FUS mainly occupies gene promoters at transcription starting sites, while its knockdown leads to an increase in AFF4 and Cdk9 occupancy on gene promoters of FUS affected genes. CONCLUSIONS: Towards eliminating the HIV infected reservoir, understanding the mechanisms by which the virus persists in the face of therapy is important. Our observations show that FUS regulates both HIV and global gene transcription and modulates viral latency, thus can potentially serve as a target for future therapy that sets to reactivate HIV from its latent state.


Asunto(s)
VIH-1/genética , Provirus/genética , Proteína FUS de Unión a ARN/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/genética , Latencia del Virus/genética , Quinasa 9 Dependiente de la Ciclina , Reservorios de Enfermedades/virología , Silenciador del Gen , Células HEK293 , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Células Jurkat , Regiones Promotoras Genéticas , Linfocitos T/virología , Activación Viral
11.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931682

RESUMEN

Human endogenous retroviruses (HERVs) make up 8% of the human genome. The HERV type K (HERV-K) HML-2 (HK2) family contains proviruses that are the most recent entrants into the human germ line and are transcriptionally active. In HIV-1 infection and cancer, HK2 genes produce retroviral particles that appear to be infectious, yet the replication capacity of these viruses and potential pathogenicity has been difficult to ascertain. In this report, we screened the efficacy of commercially available reverse transcriptase inhibitors (RTIs) at inhibiting the enzymatic activity of HK2 RT and HK2 genomic replication. Interestingly, only one provirus, K103, was found to encode a functional RT among those examined. Several nucleoside analogue RTIs (NRTIs) blocked K103 RT activity and consistently inhibited the replication of HK2 genomes. The NRTIs zidovudine (AZT), stavudine (d4T), didanosine (ddI), and lamivudine (3TC), and the nucleotide RTI inhibitor tenofovir (TDF), show efficacy in blocking K103 RT. HIV-1-specific nonnucleoside RTIs (NNRTIs), protease inhibitors (PIs), and integrase inhibitors (IIs) did not affect HK2, except for the NNRTI etravirine (ETV). The inhibition of HK2 infectivity by NRTIs appears to take place at either the reverse transcription step of the viral genome prior to HK2 viral particle formation and/or in the infected cells. Inhibition of HK2 by these drugs will be useful in suppressing HK2 infectivity if these viruses prove to be pathogenic in cancer, neurological disorders, or other diseases associated with HK2. The present studies also elucidate a key aspect of the life cycle of HK2, specifically addressing how they do, and/or did, replicate.IMPORTANCE Endogenous retroviruses are relics of ancestral virus infections in the human genome. The most recent of these infections was caused by HK2. While HK2 often remains silent in the genome, this group of viruses is activated in HIV-1-infected and cancer cells. Recent evidence suggests that these viruses are infectious, and the potential exists for HK2 to contribute to disease. We show that HK2, and specifically the enzyme that mediates virus replication, can be inhibited by a panel of drugs that are commercially available. We show that several drugs block HK2 with different efficacies. The inhibition of HK2 replication by antiretroviral drugs appears to occur in the virus itself as well as after infection of cells. Therefore, these drugs might prove to be an effective treatment by suppressing HK2 infectivity in diseases where these viruses have been implicated, such as cancer and neurological syndromes.


Asunto(s)
Retrovirus Endógenos/efectos de los fármacos , Retrovirus Endógenos/genética , Genoma Viral/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/farmacología , Transcripción Reversa/efectos de los fármacos , Fármacos Anti-VIH/farmacología , Línea Celular Tumoral , Retrovirus Endógenos/enzimología , Retrovirus Endógenos/patogenicidad , Humanos , Inhibidores de Integrasa/farmacología , Lamivudine/farmacología , Inhibidores de Proteasas/farmacología , Estavudina/farmacología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Zidovudina/farmacología
12.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331090

RESUMEN

P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4+ T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNAArg(UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements.IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4+ T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements.


Asunto(s)
Proteínas Argonautas/metabolismo , VIH-1/fisiología , Activación de Linfocitos , Replicación Viral , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Proteínas Argonautas/inmunología , Línea Celular , Retrovirus Endógenos/metabolismo , Células HEK293 , VIH-1/genética , Células HeLa , Humanos , Oligonucleótidos Antisentido/genética , Unión Proteica , ARN Interferente Pequeño/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Linfocitos T/virología
13.
Molecules ; 23(4)2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29673219

RESUMEN

Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.


Asunto(s)
Infecciones por VIH/metabolismo , Factores de Elongación Transcripcional/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Regulación Viral de la Expresión Génica , VIH-1/metabolismo , VIH-1/patogenicidad , Humanos , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción , Factores de Elongación Transcripcional/genética , Replicación Viral/fisiología
14.
J Biol Chem ; 291(34): 17953-63, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27365398

RESUMEN

The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCF(FBXO3) (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus.


Asunto(s)
Proteínas F-Box/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Ubiquitinación/fisiología , Animales , Proteínas F-Box/genética , Células HEK293 , Humanos , Ratones , Fosforilación/fisiología , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Dominios Proteicos , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción/genética , Proteína AIRE
15.
PLoS Pathog ; 11(7): e1005063, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26225566

RESUMEN

The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.


Asunto(s)
Brioestatinas/farmacología , Linfocitos T CD4-Positivos/virología , Regulación Viral de la Expresión Génica/efectos de los fármacos , VIH-1/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Diterpenos/metabolismo , VIH-1/fisiología , Humanos , Factor B de Elongación Transcripcional Positiva/metabolismo , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos
16.
J Biol Chem ; 290(3): 1829-36, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25492871

RESUMEN

Regulation of transcription elongation by positive transcription elongation factor b (P-TEFb) plays a central role in determining the state of cell activation, proliferation, and differentiation. In cells, P-TEFb exists in active and inactive forms. Its release from the inactive 7SK small nuclear ribonucleoprotein complex is a critical step for P-TEFb to activate transcription elongation. However, no good method exists to analyze this P-TEFb equilibrium in living cells. Only inaccurate and labor-intensive cell-free biochemical assays are currently available. In this study, we present the first experimental system to monitor P-TEFb activation in living cells. We created a bimolecular fluorescence complementation assay to detect interactions between P-TEFb and its substrate, the C-terminal domain of RNA polymerase II. When cells were treated with suberoylanilide hydroxamic acid, which releases P-TEFb from the 7SK small nuclear ribonucleoprotein, they turned green. Other known P-TEFb-releasing agents, including histone deacetylase inhibitors, bromodomain and extraterminal bromodomain inhibitors, and protein kinase C agonists, also scored positive in this assay. Finally, we identified 5'-azacytidine as a new P-TEFb-releasing agent. This release of P-TEFb correlated directly with activation of human HIV and HEXIM1 transcription. Thus, our visualization of P-TEFb activation by fluorescent complementation assay could be used to find new P-TEFb-releasing agents, compare different classes of agents, and assess their efficacy singly and/or in combination.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Apoptosis , Azacitidina/química , Proteínas Bacterianas/química , Sistema Libre de Células , Prueba de Complementación Genética , Glicerol/química , Células HEK293 , Células HeLa , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Proteínas Luminiscentes/química , Microscopía Fluorescente , Plásmidos/metabolismo , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Factores de Tiempo , Transcripción Genética , Vorinostat
17.
J Biol Chem ; 289(30): 21181-90, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24917669

RESUMEN

The positive transcription elongation factor b (P-TEFb), comprised of cyclin-dependent kinase 9 (CDK9) and cyclins T1 (CycT1) or T2 (CycT2), activates eukaryotic transcription elongation. In growing cells, P-TEFb exists in active and inactive forms. In the latter, it is incorporated into the 7SK small nuclear ribonucleoprotein, which contains hexamethylene bisacetamide-induced proteins (HEXIM) 1 or 2, La-related protein 7 (LaRP7), methyl phosphate capping enzyme, and 7SK small nuclear RNA (7SK). HEXIM1 inhibits the kinase activity of CDK9 via interactions between 7SK, HEXIM1, and CycT1. LaRP7 and methyl phosphate capping enzyme interact with 7SK independently of HEXIM1 and P-TEFb. To analyze genetic interactions between HEXIM1 and/or LaRP7 and 7SK using a cell-based system, we established artificial heterologous RNA tethering assays in which reporter gene expression depended on interactions between selected regions of 7SK and its cognate binding partners fused to a strong activator. This system enabled us to map the HEXIM1- and LaRP7- binding regions of 7SK. Assays with various mutant 7SK plasmid targets revealed that the 5'U-Ubulge and central loop of stem-loop I or RNA motif 3 of 7SK are required for transactivation, suggesting that HEXIM1 and CycT1 form a combinatorial binding surface for 7SK. Moreover, a region in HEXIM1 C-terminal to its previously mapped RNA-binding motif was also required for interactions between HEXIM1 and 7SK. Finally, a tyrosine-to-alanine mutation in HEXIM1, which is critical for its inhibitory effect on CDK9, changed HEXIM1 into an activator. These cell-based assays elucidate this important aspect of transcription elongation in vivo.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Secuencias de Aminoácidos , Ciclina T/genética , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Células HEK293 , Células HeLa , Humanos , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Relación Estructura-Actividad , Factores de Transcripción , Activación Transcripcional/genética
18.
J Biol Chem ; 289(14): 9918-25, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24515107

RESUMEN

By phosphorylating negative elongation factors and the C-terminal domain of RNA polymerase II (RNAPII), positive transcription elongation factor b (P-TEFb), which is composed of CycT1 or CycT2 and CDK9, activates eukaryotic transcription elongation. In growing cells, it is found in active and inactive forms. In the former, free P-TEFb is a potent transcriptional coactivator. In the latter, it is inhibited by HEXIM1 or HEXIM2 in the 7SK small nuclear ribonucleoprotein (snRNP), which contains, additionally, 7SK snRNA, methyl phosphate-capping enzyme (MePCE), and La-related protein 7 (LARP7). This P-TEFb equilibrium determines the state of growth and proliferation of the cell. In this study, the release of P-TEFb from the 7SK snRNP led to increased synthesis of HEXIM1 but not HEXIM2 in HeLa cells, and this occurred only from an unannotated, proximal promoter. ChIP with sequencing revealed P-TEFb-sensitive poised RNA polymerase II at this proximal but not the previously annotated distal HEXIM1 promoter. Its immediate upstream sequences were fused to luciferase reporters and were found to be responsive to many P-TEFb-releasing compounds. The superelongation complex subunits AF4/FMR2 family member 4 (AFF4) and elongation factor RNA polymerase II 2 (ELL2) were recruited to this proximal promoter after P-TEFb release and were required for its transcriptional effects. Thus, P-TEFb regulates its own equilibrium in cells, most likely to maintain optimal cellular homeostasis.


Asunto(s)
Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Transcripción Genética/fisiología , Ciclina T/genética , Quinasa 9 Dependiente de la Ciclina/genética , Células HEK293 , Células HeLa , Humanos , Metiltransferasas/biosíntesis , Metiltransferasas/genética , Factor B de Elongación Transcripcional Positiva/genética , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Ribonucleoproteínas/biosíntesis , Ribonucleoproteínas/genética , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Ribonucleoproteínas Nucleares Pequeñas/genética , Factores de Transcripción , Factores de Elongación Transcripcional
19.
J Biol Chem ; 288(20): 14400-14407, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23539624

RESUMEN

Numerous studies have looked at the effects of histone deacetylase inhibitors (HDACis) on HIV reactivation in established transformed cell lines and primary CD4(+) T cells. However, their findings remain confusing, and differences between effects of class I- and class II-specific HDACis persist. Because no clear picture emerged, we decided to determine how HDACis reactivate HIV in transformed cell lines and primary cells. We found that neither histone H3 nor tubulin acetylation correlated with HIV reactivation in Jurkat and HeLa cells. Rather, HDACis that could reactivate HIV in chromatin or on episomal plasmids also released free positive transcription elongation factor b (P-TEFb) from its inhibitory 7SK snRNP. In resting primary CD4(+) T cells, where levels of P-TEFb are vanishingly low, the most potent HDACi, suberoylanilide hydroxyamic acid (SAHA), had minimal effects. In contrast, when these cells were treated with a PKC agonist, bryostatin 1, which increased levels of P-TEFb, then SAHA once again reactivated HIV. We conclude that HDACis, which can reactivate HIV, work via the release of free P-TEFb from the 7SK snRNP.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Linfocitos T CD4-Positivos/citología , Línea Celular , Regulación Viral de la Expresión Génica , Infecciones por VIH/tratamiento farmacológico , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Células Jurkat , Factor B de Elongación Transcripcional Positiva/genética , Factores de Transcripción , Tubulina (Proteína)/metabolismo
20.
Nucleic Acids Res ; 40(18): 9160-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22821562

RESUMEN

The positive transcription elongation factor b (P-TEFb) regulates RNA polymerase II elongation. In cells, P-TEFb partitions between small active and larger inactive states. In the latter, HEXIM1 binds to 7SK snRNA and recruits as well as inactivates P-TEFb in the 7SK snRNP. Several stimuli can affect this P-TEFb equilibrium. In this study, we demonstrate that protein kinase C (PKC) phosphorylates the serine at position158 (S158) in HEXIM1. This phosphorylated HEXIM1 protein neither binds to 7SK snRNA nor inhibits P-TEFb. Phorbol esters or the engagement of the T cell antigen receptor, which activate PKC and the expression of the constitutively active (CA) PKCθ protein, which is found in T cells, inhibit the formation of the 7SK snRNP. All these stimuli increase P-TEFb-dependent transcription. In contrast, the kinase-negative PKCθ and the mutant HEXIM1 (S158A) proteins block effects of these PKC-activating stimuli. These results indicate that the phosphorylation of HEXIM1 by PKC represents a major regulatory step of P-TEFb activity in cells.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Línea Celular , Humanos , Células Jurkat , Datos de Secuencia Molecular , FN-kappa B/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/química , Receptores de Antígenos de Linfocitos T/inmunología , Serina/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA