Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Opt Express ; 31(5): 9081-9097, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36860008

RESUMEN

Free-space optical (FSO) systems are compulsory to realize high capacity and interference-free communication links from low-Earth orbit (LEO) satellite constellations as well as spacecraft and space stations to the Earth. To be integrated with high-capacity ground networks, the collected portion of the incident beam should be coupled into an optical fiber. To accurately evaluate the signal-to-noise ratio (SNR) and bit-error rate (BER) performance metrics, the probability density function (PDF) of fiber coupling efficiency (CE) must be determined. Previous studies have experimentally verified the CE PDF for a single-mode fiber, however, there is no such investigation for the CE PDF of a multi-mode fiber (MMF) in a LEO-to-ground FSO downlink. In this paper, for the first time, the CE PDF for a 200-µm MMF is experimentally investigated using data from an FSO downlink from the Small Optical Link for International Space Station (SOLISS) terminal to a 40-cm sub-aperture optical ground station (OGS) supported by a fine-tracking system. An average CE of 5.45 dB was also achieved given that the alignment between SOLISS and OGS was not optimal. In addition, using the angle-of-arrival (AoA) and received power data, the statistical characteristics such as channel coherence time, power spectral density, spectrogram, and PDFs of AoA, beam misalignments, and atmospheric turbulence-induced fluctuations are revealed and compared with the state-of-the-art theoretical background.

2.
Phys Rev Lett ; 131(1): 013601, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478457

RESUMEN

In a single qubit system, a universal quantum classifier can be realized using the data reuploading technique. In this study, we propose a new quantum classifier applying this technique to bosonic systems and successfully demonstrate it using a silicon-based photonic integrated circuit. We established a theory of quantum machine learning algorithm applicable to bosonic systems and implemented a programmable optical circuit combined with an interferometer. Learning and classification using part of the implemented optical quantum circuit with uncorrelated two photons resulted in a classification with a success probability of 94±0.8% in the proof of principle experiment. As this method can be applied to an arbitrary two-mode N-photon system, further development of optical quantum classifiers, such as extensions to quantum entangled and multiphoton states, is expected in the future.

3.
Opt Express ; 29(23): 37150-37160, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808793

RESUMEN

Heralded single photons (HSPs) generated by spontaneous parametric down-conversion (SPDC) are useful resource to achieve various photonic quantum information processing. Given a large-scale experiment which needs multiple HSPs, increasing the generation rate with suppressing higher-order pair creation is desirable. One of the promising ways is to use a pump laser with a GHz-order repetition rate. In such a high repetition rate regime, however, single-photon detectors can only partially identify the pulses. Hence, we develop a simple model to consider that effect on the spectral purity, and experimentally demonstrate a high-visibility Hong-Ou-Mandel interference between two independent HSPs generated by SPDC with 3.2 GHz-repetition-rate mode-locked pump pulses. The observed visibility of 0.88(3) is in good agreement with our theoretical model.

4.
Opt Express ; 28(15): 22399-22411, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752502

RESUMEN

Heralded single photons (HSPs) and entangled photon pairs (EPPs) via spontaneous parametric down-conversion are essential tools for the development of photonic quantum information technologies. In this paper, we report a novel ultra-high-rate nonclassical light source realized by developing 50 GHz-repetition-rate mode-locked pump pulses and multiplexed superconducting nanowire single-photon detectors. The presence of the single-photon state in the heralded photons with our setup was indicated by the second-order intensity correlation below 1/2 at the heralding rate over 20 Mcps. Even at the rate beyond 50 Mcps, the nonclassicality was still observed with the intensity correlation below unity. Moreover, our setup is also applicable to the polarization-EPP experiment, where we obtained the maximum coincidence rate of 1.6 Mcps with the fidelity of 0.881 ± (0.254 × 10-3) to the maximally entangled state. Our versatile source could be a promising tool to explore various large-scale quantum-photonic experiments with low success probability and heavy attenuation.

5.
Opt Express ; 26(18): 23305-23332, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184984

RESUMEN

Free space optical (FSO) communications are enabling high-speed global wireless networks. Thanks to the highly directional nature of laser beam, they also yield a greater security advantage over radio frequency counterparts. When combined with a scheme of secret key agreement (SKA), FSO-SKA can establish at high speed a symmetric secret key which cannot be decrypted even by unbounded computer resources. Although there have been many theoretical studies on SKA, experimental investigations have been quite lacking, especially on quantifying eavesdropping risks and secret key rates in realistic environment. Here, we report the first full-field implementations of FSO-SKA in a 7.8-km terrestrial link with a probing station, enabling the estimation of eavesdropping risks. We attain the final key rates from 100 kbps to 7.77 Mbps under various atmospheric and beaming conditions even with total losses of 55dB or higher, in which known quantum key distribution schemes attain impractically low key rates.

6.
Opt Express ; 26(15): 19513-19523, 2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30114122

RESUMEN

Secret key agreement using physical properties of a wireless channel is becoming a promising scheme to establish a secret key between two users, especially in short-distance radio frequency (RF) communications. In this scheme, the existence of codes or key distillation that can make the leaked information to an eavesdropper arbitrarily small can be derived in an information theoretical way, given a priori knowledge on the channel linking a sender (Alice), a legitimate receiver (Bob), and an eavesdropper (Eve), which is called the wiretap channel. In practice, however, it is often difficult for Alice and Bob to get sufficient knowledge on Eve. In this study, we implement a free-space optical wiretap channel in a 7.8 km-terrestrial link and study how to estimate Eve's tapping ability, demonstrating high speed secret key agreement in the optical domain under a certain restricted condition of line-of-sight.

7.
Opt Express ; 25(4): 3445-3453, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241558

RESUMEN

We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 µm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.

8.
Opt Express ; 25(2): 622-634, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28157952

RESUMEN

Security certification of quantum key distribution (QKD) systems under practical conditions is necessary for social deployment. This article focused on the transmitter, and, in particular, investigated the intensity fluctuation of the optical pulses emitted by a gain-switched semiconductor laser used in QKD systems implementing decoy-BB84 protocol. A large intensity fluctuation was observed for low excitation, showing strong negative correlation between the adjacent pulses, which would affect the final key rate. The fluctuation decreased and the correlation disappeared as excitation increased. Simulation with rate equations successfully reproduced the experimental results and revealed that the large fluctuation originates from an intrinsic instability of gain-switched lasers driven periodically at a rate comparable to the inverse of carrier lifetime, as in GHz-clock QKD systems. Methods for further reduction of the intensity fluctuation were also discussed.

9.
Opt Express ; 25(11): 12069-12080, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786565

RESUMEN

A high visibility Hong-Ou-Mandel (HOM) interference between two independently prepared photons plays an important role in various photonic quantum information processing. In a standard HOM experiment using photons generated by pulse-pumped spontaneous parametric down conversion (SPDC), larger detection time windows than the coherence time of photons have been employed for measuring the HOM visibility and/or drawing the HOM dip. If large amounts of stray photons continuously exist within the detection time windows, employing small detection time windows is favorable for reducing the effect of background noises. Especially, such a setup is helpful for the HOM experiment using continuous wave (cw)-pumped SPDC and the time-resolved coincidence measurement. Here we argue that the method for determining the HOM visibility used in the previous cw experiments tends to suffer from distortion arising from biased contribution of the background noises. We then present a new method with unbiased treatment of the cw backgrounds. By using this method, we experimentally demonstrate a high visibility HOM interference of two heralded telecom photons independently generated by SPDC with employing cw pump light. An observed HOM visibility is 0.87 ± 0.04, which is as high as those observed by using pulse-pumped SPDC photons.

10.
Opt Lett ; 42(4): 815-818, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198872

RESUMEN

We present the generation of quantum-correlated photon pairs and subsequent pump rejection across two silicon-on-insulator photonic integrated circuits. Incoherently cascaded lattice filters are used to provide over 100 dB pass-band to stop-band contrast with no additional external filtering. Photon pairs generated in a microring resonator are successfully separated from the input pump, confirmed by temporal correlations measurements.

11.
Opt Express ; 24(8): 8940-55, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137325

RESUMEN

We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper. The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security.

12.
Opt Lett ; 41(21): 4883-4886, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27805641

RESUMEN

Quantum digital signatures (QDSs) apply quantum mechanics to the problem of guaranteeing message integrity and non-repudiation with information-theoretical security, which are complementary to the confidentiality realized by quantum key distribution (QKD). Previous experimental demonstrations have been limited to transmission distances of less than 5 km of optical fiber in a laboratory setting. Here we report, to the best of our knowledge, the first demonstration of QDSs over installed optical fiber, as well as the longest transmission link reported to date. This demonstration used a 90 km long differential phase shift QKD to achieve approximately one signed bit per second, an increase in the signature generation rate of several orders of magnitude over previous optical fiber demonstrations.

13.
Opt Express ; 23(2): 1103-13, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25835870

RESUMEN

We demonstrate time-bin entanglement generation in telecom wavelength using a 7 µm radius Si micro-ring resonator pumped by a continuous wave laser. The resonator structure can enhance spontaneous four wave mixing, leading to a photon pair generation rate of about 90-100 Hz with a laser pump power of as low as -3.92 dBm (0.41 mW). We succeed in observing time-bin entanglement with the visibility over 92%. Moreover, wavelength-tunability of the entangled photon pair is demonstrated by changing the operation temperature.

14.
Opt Express ; 23(22): 28836-48, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561152

RESUMEN

Hong-Ou-Mandel (HOM) interference between independent photon sources (HOMI-IPS) is the fundamental block for quantum information processing. All the previous HOMI-IPS experiments were carried out in time-domain, however, the spectral information during the interference was omitted. Here, we investigate the HOMI-IPS in spectral domain using the recently developed fast fiber spectrometer, and demonstrate the spectral distribution during the HOM interference between two heralded single-photon sources, and two thermal sources. This experiment not only can deepen our understanding of HOMI-IPS from the viewpoint of spectral domain, but also presents a tool to test the theoretical predictions of HOMI-IPS using spectrally engineered sources.

15.
Opt Express ; 22(10): 11498-507, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24921271

RESUMEN

We demonstrate pulsed polarization-entangled photons generated from a periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied, the intrinsic spectral purity of the photons is much higher than in the previous scheme at around 800 nm wavelength. The combination of a Sagnac interferometer and the GVM-PPKTP crystal makes our entangled source compact, stable, highly entangled, spectrally pure and ultra-bright. The photons were detected by two superconducting nanowire single photon detectors (SNSPDs) with detection efficiencies of 70% and 68% at dark counts of less than 1 kcps. We achieved fidelities of 0.981 ± 0.0002 for |ψ(-)〉 and 0.980 ± 0.001 for |ψ(+)〉 respectively. This GVM-PPKTP-Sagnac scheme is directly applicable to quantum communication experiments at telecom wavelength, especially in free space.

16.
Opt Express ; 22(11): 13616-24, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24921555

RESUMEN

We report on an experimental demonstration of the modified Ekert 91 protocol of quantum key distribution using a hybrid entanglement source with two different degrees of freedoms, a 1550 nm time-bin qubit and 810 nm polarization qubit. The violation of the Clauser-Horne-Shimony-Holt inequality could be demonstrated for the entanglement between the polarization qubit in free space and the time-bin qubit through 20 km fiber transmission. The secure key rate in our system is estimated 70-150 bps.

17.
Opt Express ; 22(9): 11205-14, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921818

RESUMEN

We demonstrate a low-noise frequency down-conversion of photons at 637 nm to the telecommunication band at 1587 nm by the difference frequency generation in a periodically-poled lithium niobate. An internal conversion efficiency of the converter is estimated to be 0.44 at the maximum which is achieved by a pump power of 0.43 W, whereas a rate of internal background photons caused by the strong cw pump laser is estimated to be 9 kHz/mW within a bandwidth of about 1 nm. By using the experimental values related to the intrinsic property of the converter, and using the intensity correlation and the average photon number of a 637 nm input light pulse, we derive the intensity correlation of a converted telecom light pulse. Then we discuss feasibility of a single-photon frequency conversion to the telecommunication band for a long-distance quantum communication based on NV centers in diamond.

18.
Sci Rep ; 14(1): 1051, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200214

RESUMEN

We demonstrate a pulsed operation of an entangled photon pair source that is based on a silicon ring resonator. Time-bin entangled photon pairs at telecommunication wavelengths are generated via spontaneous four-wave mixing, which is excited by a pulsed pump laser. The entanglement between the generated photon pair is analyzed by using asymmetric Mach-Zehnder interferometers followed by single-photon detectors, resulting in non-classical interference with a visibility exceeding a classical limit. The reason for the degradation of the interference visibility is discussed using the theoretical model with experimental parameters. Our experimental results show successful pulsed generation of entanglement, which represents an important step towards a synchronized quantum network based on silicon photonics.

19.
Opt Express ; 21(5): 6304-12, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482199

RESUMEN

We derive the time-dependent photo-detection probability equation of a superconducting single photon detector (SSPD) to study the responsive property for a pulse train at high repetition rate. Using this equation, we analyze the characteristics of SSPDs when illuminated by bright pulses in blinding attack on a quantum key distribution (QKD). We obtain good agreement between expected values based on our equation and actual experimental values. Such a time-dependent probability analysis contributes to security analysis.

20.
Opt Express ; 21(25): 31395-401, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24514714

RESUMEN

Maintenance-free wavelength-division-multiplexing quantum key distribution for 30 days was achieved through a 22-km field fiber. Using polarization-independent interferometers and stabilization techniques, we attained a quantum bit error rate as low as 1.70% and an estimated secure key rate as high as 112.4 kbps for a record-breaking 291.3 Gbits of estimated secure keys accumulated over an uninterrupted operation period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA